LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias
- URL: http://arxiv.org/abs/2410.17242v1
- Date: Tue, 22 Oct 2024 17:58:28 GMT
- Title: LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias
- Authors: Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah Snavely, Zexiang Xu,
- Abstract summary: We propose a transformer-based approach for scalable and generalizable novel view synthesis from sparse-view inputs.
We introduce two architectures: (1) an encoder-decoder LVSM, which encodes input image tokens into a fixed number of 1D latent tokens; and (2) a decoder-only LVSM, which directly maps input images to novel-view outputs.
- Score: 50.13457154615262
- License:
- Abstract: We propose the Large View Synthesis Model (LVSM), a novel transformer-based approach for scalable and generalizable novel view synthesis from sparse-view inputs. We introduce two architectures: (1) an encoder-decoder LVSM, which encodes input image tokens into a fixed number of 1D latent tokens, functioning as a fully learned scene representation, and decodes novel-view images from them; and (2) a decoder-only LVSM, which directly maps input images to novel-view outputs, completely eliminating intermediate scene representations. Both models bypass the 3D inductive biases used in previous methods -- from 3D representations (e.g., NeRF, 3DGS) to network designs (e.g., epipolar projections, plane sweeps) -- addressing novel view synthesis with a fully data-driven approach. While the encoder-decoder model offers faster inference due to its independent latent representation, the decoder-only LVSM achieves superior quality, scalability, and zero-shot generalization, outperforming previous state-of-the-art methods by 1.5 to 3.5 dB PSNR. Comprehensive evaluations across multiple datasets demonstrate that both LVSM variants achieve state-of-the-art novel view synthesis quality. Notably, our models surpass all previous methods even with reduced computational resources (1-2 GPUs). Please see our website for more details: https://haian-jin.github.io/projects/LVSM/ .
Related papers
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - Free3D: Consistent Novel View Synthesis without 3D Representation [63.931920010054064]
Free3D is a simple accurate method for monocular open-set novel view synthesis (NVS)
Compared to other works that took a similar approach, we obtain significant improvements without resorting to an explicit 3D representation.
arXiv Detail & Related papers (2023-12-07T18:59:18Z) - Consistent-1-to-3: Consistent Image to 3D View Synthesis via Geometry-aware Diffusion Models [16.326276673056334]
Consistent-1-to-3 is a generative framework that significantly mitigates this issue.
We decompose the NVS task into two stages: (i) transforming observed regions to a novel view, and (ii) hallucinating unseen regions.
We propose to employ epipolor-guided attention to incorporate geometry constraints, and multi-view attention to better aggregate multi-view information.
arXiv Detail & Related papers (2023-10-04T17:58:57Z) - GenLayNeRF: Generalizable Layered Representations with 3D Model
Alignment for Multi-Human View Synthesis [1.6574413179773757]
GenLayNeRF is a generalizable layered scene representation for free-viewpoint rendering of multiple human subjects.
We divide the scene into multi-human layers anchored by the 3D body meshes.
We extract point-wise image-aligned and human-anchored features which are correlated and fused.
arXiv Detail & Related papers (2023-09-20T20:37:31Z) - Efficient View Synthesis and 3D-based Multi-Frame Denoising with
Multiplane Feature Representations [1.18885605647513]
We introduce the first 3D-based multi-frame denoising method that significantly outperforms its 2D-based counterparts with lower computational requirements.
Our method extends the multiplane image (MPI) framework for novel view synthesis by introducing a learnable encoder-renderer pair manipulating multiplane in feature space.
arXiv Detail & Related papers (2023-03-31T15:23:35Z) - NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as
General Image Priors [24.05480789681139]
We propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models.
We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model.
We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
arXiv Detail & Related papers (2022-12-06T19:00:07Z) - 3D-Aware Encoding for Style-based Neural Radiance Fields [50.118687869198716]
We learn an inversion function to project an input image to the latent space of a NeRF generator and then synthesize novel views of the original image based on the latent code.
Compared with GAN inversion for 2D generative models, NeRF inversion not only needs to 1) preserve the identity of the input image, but also 2) ensure 3D consistency in generated novel views.
We propose a two-stage encoder for style-based NeRF inversion.
arXiv Detail & Related papers (2022-11-12T06:14:12Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
We present 3DiM, a diffusion model for 3D novel view synthesis.
It is able to translate a single input view into consistent and sharp completions across many views.
3DiM can generate multiple views that are 3D consistent using a novel technique called conditioning.
arXiv Detail & Related papers (2022-10-06T16:59:56Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis [45.51447644809714]
We propose a novel generative model, named Periodic Implicit Generative Adversarial Networks ($pi$-GAN or pi-GAN) for high-quality 3D-aware image synthesis.
The proposed approach obtains state-of-the-art results for 3D-aware image synthesis with multiple real and synthetic datasets.
arXiv Detail & Related papers (2020-12-02T01:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.