pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis
- URL: http://arxiv.org/abs/2012.00926v2
- Date: Mon, 5 Apr 2021 23:18:10 GMT
- Title: pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware
Image Synthesis
- Authors: Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon
Wetzstein
- Abstract summary: We propose a novel generative model, named Periodic Implicit Generative Adversarial Networks ($pi$-GAN or pi-GAN) for high-quality 3D-aware image synthesis.
The proposed approach obtains state-of-the-art results for 3D-aware image synthesis with multiple real and synthetic datasets.
- Score: 45.51447644809714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have witnessed rapid progress on 3D-aware image synthesis, leveraging
recent advances in generative visual models and neural rendering. Existing
approaches however fall short in two ways: first, they may lack an underlying
3D representation or rely on view-inconsistent rendering, hence synthesizing
images that are not multi-view consistent; second, they often depend upon
representation network architectures that are not expressive enough, and their
results thus lack in image quality. We propose a novel generative model, named
Periodic Implicit Generative Adversarial Networks ($\pi$-GAN or pi-GAN), for
high-quality 3D-aware image synthesis. $\pi$-GAN leverages neural
representations with periodic activation functions and volumetric rendering to
represent scenes as view-consistent 3D representations with fine detail. The
proposed approach obtains state-of-the-art results for 3D-aware image synthesis
with multiple real and synthetic datasets.
Related papers
- Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image.
Our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume.
In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences.
arXiv Detail & Related papers (2023-04-05T17:15:47Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z) - 3D-aware Image Synthesis via Learning Structural and Textural
Representations [39.681030539374994]
We propose VolumeGAN, for high-fidelity 3D-aware image synthesis, through explicitly learning a structural representation and a textural representation.
Our approach achieves sufficiently higher image quality and better 3D control than the previous methods.
arXiv Detail & Related papers (2021-12-20T18:59:40Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z) - GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis [43.4859484191223]
We propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene.
By introducing a multi-scale patch-based discriminator, we demonstrate synthesis of high-resolution images while training our model from unposed 2D images alone.
arXiv Detail & Related papers (2020-07-05T20:37:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.