論文の概要: Evaluating Performance and Bias of Negative Sampling in Large-Scale Sequential Recommendation Models
- arxiv url: http://arxiv.org/abs/2410.17276v1
- Date: Tue, 08 Oct 2024 00:23:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 05:40:25.380984
- Title: Evaluating Performance and Bias of Negative Sampling in Large-Scale Sequential Recommendation Models
- Title(参考訳): 大規模シーケンスレコメンデーションモデルにおける負サンプリングの性能とバイアスの評価
- Authors: Arushi Prakash, Dimitrios Bermperidis, Srivas Chennu,
- Abstract要約: 大規模産業レコメンデーションモデルは、数百万から数十億のオプションを含むカタログから最も関連性の高いアイテムを予測する。
これらのモデルを効率的に訓練するために、関連する項目ごとに巨大なカタログから無関係な項目(負のサンプル)の小さなセットが選択される。
本稿では、現代の逐次レコメンデーションモデルにおいて、様々なネガティブサンプリング手法の実装と比較により、この問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large-scale industrial recommendation models predict the most relevant items from catalogs containing millions or billions of options. To train these models efficiently, a small set of irrelevant items (negative samples) is selected from the vast catalog for each relevant item (positive example), helping the model distinguish between relevant and irrelevant items. Choosing the right negative sampling method is a common challenge. We address this by implementing and comparing various negative sampling methods - random, popularity-based, in-batch, mixed, adaptive, and adaptive with mixed variants - on modern sequential recommendation models. Our experiments, including hyperparameter optimization and 20x repeats on three benchmark datasets with varying popularity biases, show how the choice of method and dataset characteristics impact key model performance metrics. We also reveal that average performance metrics often hide imbalances across popularity bands (head, mid, tail). We find that commonly used random negative sampling reinforces popularity bias and performs best for head items. Popularity-based methods (in-batch and global popularity negative sampling) can offer balanced performance at the cost of lower overall model performance results. Our study serves as a practical guide to the trade-offs in selecting a negative sampling method for large-scale sequential recommendation models.
- Abstract(参考訳): 大規模産業レコメンデーションモデルは、数百万から数十億のオプションを含むカタログから最も関連性の高いアイテムを予測する。
これらのモデルを効率的に訓練するために、関連する項目ごとに巨大なカタログから無関係な項目(負のサンプル)の小さなセットが選択され、関連する項目と無関係な項目を区別するのに役立つ。
正負サンプリング法を選択することは一般的な課題である。
我々は、現代の逐次レコメンデーションモデルに基づいて、ランダム、人気ベース、インバッチ、混合、適応、適応といった様々なネガティブサンプリング手法を実装、比較することで、この問題に対処する。
ハイパーパラメータ最適化や、人気バイアスの異なる3つのベンチマークデータセットの20倍の繰り返しを含む我々の実験は、メソッドとデータセットの特徴の選択がキーモデルのパフォーマンス指標にどのように影響するかを示している。
また、平均的なパフォーマンス指標が人気バンド(頭、中、尾)間で不均衡を隠していることも明らかになりました。
ランダムなネガティブサンプリングは人気バイアスを強くし,ヘッドアイテムに最適であることがわかった。
人気度に基づく手法(バッチ内およびグローバルな人気陰性サンプリング)は、全体のモデル性能を低下させるコストでバランスの取れた性能を提供する。
本研究は,大規模シーケンシャルレコメンデーションモデルの負サンプリング法を選択する際のトレードオフの実践的ガイドとして機能する。
関連論文リスト
- Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
アノテーションの品質向上のために,人間とLMの入力を組み合わせたルーティングフレームワークを提案する。
我々は、人間とLMアノテーションの任意の組み合わせで報酬モデルの性能を予測するために、性能予測モデルを訓練する。
選択したハイブリッド混合物は,一方のみ使用した場合と比較して,報奨モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-24T20:04:15Z) - Out-of-sample scoring and automatic selection of causal estimators [0.0]
本稿では,CATEの場合と器楽変数問題の重要な部分集合に対する新しいスコアリング手法を提案する。
私たちはそれを、DoWhyとEconMLライブラリに依存するオープンソースパッケージで実装しています。
論文 参考訳(メタデータ) (2022-12-20T08:29:18Z) - Generating Negative Samples for Sequential Recommendation [83.60655196391855]
逐次レコメンデーション(SR)のための負のサンプル(イテム)を生成することを提案する。
アイテムに対する現在のSRモデルの学習されたユーザの好みに基づいて、各タイムステップで負の項目をサンプリングする。
4つの公開データセットの実験は、SRに高品質な負のサンプルを提供することの重要性を検証する。
論文 参考訳(メタデータ) (2022-08-07T05:44:13Z) - A Case Study on Sampling Strategies for Evaluating Neural Sequential
Item Recommendation Models [69.32128532935403]
負の項目をサンプリングする2つのよく知られた戦略は、一様ランダムサンプリングと人気によるサンプリングである。
我々は、現在最先端のシーケンシャルレコメンデータモデルを再評価する。
いずれのサンプリング戦略も,モデルの完全なランキングと比較すると,一貫性のないランキングを生成できることがわかった。
論文 参考訳(メタデータ) (2021-07-27T19:06:03Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
半定量的理論フレームワークを用いて, InfoNCE に最適化された負のサンプル数について検討した。
トレーニングの有効性関数を最大化する$K$値を用いて,最適負サンプリング比を推定する。
論文 参考訳(メタデータ) (2021-05-27T08:38:29Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
本稿では,暗黙的フィードバックの特徴を探究し,推奨するSet2setRankフレームワークを提案する。
提案するフレームワークはモデルに依存しず,ほとんどの推奨手法に容易に適用できる。
論文 参考訳(メタデータ) (2021-05-16T08:06:22Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Addressing Class-Imbalance Problem in Personalized Ranking [47.11372043636176]
ペアランク付けモデルのクラスバランス問題を緩和するために,効率的なエンファンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アンダーライン アン
VINSは、与えられた正の項目よりも大きい負の候補を受け入れる傾向にある確率を拒絶するバイアスサンプリングである。
論文 参考訳(メタデータ) (2020-05-19T08:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。