論文の概要: Disease Outbreak Detection and Forecasting: A Review of Methods and Data Sources
- arxiv url: http://arxiv.org/abs/2410.17290v1
- Date: Mon, 21 Oct 2024 16:20:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:28.551884
- Title: Disease Outbreak Detection and Forecasting: A Review of Methods and Data Sources
- Title(参考訳): 疾患のアウトブレイク検出と予測:方法とデータソースのレビュー
- Authors: Ghazaleh Babanejaddehaki, Aijun An, Manos Papagelis,
- Abstract要約: 感染症の早期発見と追跡は、死亡率を低下させる可能性がある。
多くの国が感染症監視システムを導入しており、疫病の発見が主な目的となっている。
インターネットとソーシャルメディアは、ユーザが好みや関係に関する情報を共有する重要なプラットフォームになっている。
本稿では,時系列データを用いたアウトブレイク検出のための研究者による既存の標準手法について概説する。
- 参考スコア(独自算出の注目度): 3.64584397341127
- License:
- Abstract: Infectious diseases occur when pathogens from other individuals or animals infect a person, resulting in harm to both individuals and society as a whole. The outbreak of such diseases can pose a significant threat to human health. However, early detection and tracking of these outbreaks have the potential to reduce the mortality impact. To address these threats, public health authorities have endeavored to establish comprehensive mechanisms for collecting disease data. Many countries have implemented infectious disease surveillance systems, with the detection of epidemics being a primary objective. The clinical healthcare system, local/state health agencies, federal agencies, academic/professional groups, and collaborating governmental entities all play pivotal roles within this system. Moreover, nowadays, search engines and social media platforms can serve as valuable tools for monitoring disease trends. The Internet and social media have become significant platforms where users share information about their preferences and relationships. This real-time information can be harnessed to gauge the influence of ideas and societal opinions, making it highly useful across various domains and research areas, such as marketing campaigns, financial predictions, and public health, among others. This article provides a review of the existing standard methods developed by researchers for detecting outbreaks using time series data. These methods leverage various data sources, including conventional data sources and social media data or Internet data sources. The review particularly concentrates on works published within the timeframe of 2015 to 2022.
- Abstract(参考訳): 感染症は、他の個人や動物の病原体が人に感染した場合に起こり、個人や社会全体に害を与える。
このような病気の発生は、人間の健康に重大な脅威をもたらす可能性がある。
しかし、これらのアウトブレイクの早期発見と追跡は、死亡率を低下させる可能性がある。
これらの脅威に対処するため、公衆衛生当局は、疾病データを収集するための包括的なメカニズムを確立するために努力してきた。
多くの国が感染症監視システムを導入しており、疫病の発見が主な目的となっている。
臨床医療システム、地方・州保健機関、連邦機関、学術・専門団体、そして協力する政府機関がこのシステムの中で重要な役割を担っている。
さらに最近では,検索エンジンやソーシャルメディアプラットフォームが,病気の傾向をモニタリングするための貴重なツールとして機能している。
インターネットとソーシャルメディアは、ユーザが好みや関係に関する情報を共有する重要なプラットフォームになっている。
このリアルタイム情報は、アイデアや社会的意見の影響を評価できるため、マーケティングキャンペーン、財務予測、公衆衛生など、様々な分野や研究分野において非常に有用である。
本稿では,時系列データを用いたアウトブレイク検出のための研究者による既存の標準手法について概説する。
これらの手法は、従来のデータソースやソーシャルメディアデータ、インターネットデータソースなど、さまざまなデータソースを活用する。
このレビューは特に2015年から2022年までの期間に出版された作品に焦点を当てている。
関連論文リスト
- Infectious Disease Forecasting in India using LLM's and Deep Learning [0.3141085922386211]
本稿では,感染症発生の重症度を予測するためのディープラーニングアルゴリズムとLCMを実装した。
私たちの研究から得た知見は、将来のアウトブレイクに対する堅牢な予測システムの構築を支援することを目的としています。
論文 参考訳(メタデータ) (2024-10-26T12:54:09Z) - Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - Combating Health Misinformation in Social Media: Characterization,
Detection, Intervention, and Open Issues [24.428582199602822]
様々なソーシャルメディアプラットフォームの台頭は、オンライン誤報の拡散も可能にしている。
ソーシャルメディアにおける健康情報の誤報は、さまざまな分野の研究者から注目を集める新たな研究方向となっている。
論文 参考訳(メタデータ) (2022-11-10T01:52:12Z) - When Infodemic Meets Epidemic: a Systematic Literature Review [3.3454373538792543]
ソーシャルメディアは、バイオサーベイランスに活用できる大量のデータを提供している。
この体系的な文献レビューは、さまざまな流行関連文脈におけるソーシャルメディアの統合の方法論的概要を提供する。
論文 参考訳(メタデータ) (2022-10-03T21:04:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
新型コロナウイルスは、公衆衛生、社会、経済のほぼすべての領域に永続的な被害をもたらしている。
既存の研究は、伝統的な統計モデルと流行拡散理論の集約に依存している。
我々は,抽出した出来事と関係に基づいて,ソーシャルメディアがパンデミックの知識を広める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-08T15:46:05Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
ウェアラブルセンサから継続的に収集される各種データストリームにより、健康状態の推定が可能です。
行動関連マルチソースデータストリームをローカル・グローバル・グラフでモデル化することを提案する。
学生生活データセットを用いて実験を行い,提案モデルの有効性を実証した。
論文 参考訳(メタデータ) (2021-03-23T11:10:04Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
新型コロナウイルスの危機は、1918年のH1N1パンデミック以来、公衆衛生にとって最も危険な脅威である。
技術支援による位置追跡と接触追跡は、広く採用されれば、感染症の拡散を抑えるのに役立つかもしれない。
個人のデバイス上での自発的な位置情報とBluetoothトラッキングに基づいて、"diAry"や"digital Ariadne"と呼ばれるツールを提示する。
論文 参考訳(メタデータ) (2020-04-16T15:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。