EEG-DIF: Early Warning of Epileptic Seizures through Generative Diffusion Model-based Multi-channel EEG Signals Forecasting
- URL: http://arxiv.org/abs/2410.17343v1
- Date: Tue, 22 Oct 2024 18:18:48 GMT
- Title: EEG-DIF: Early Warning of Epileptic Seizures through Generative Diffusion Model-based Multi-channel EEG Signals Forecasting
- Authors: Zekun Jiang, Wei Dai, Qu Wei, Ziyuan Qin, Kang Li, Le Zhang,
- Abstract summary: This study proposes a multi-signal prediction algorithm based on generative diffusion models (EEG-DIF)
The results demonstrate that our method can accurately predict future trends for multi-channel EEG signals simultaneously.
EEG-DIF provides a novel approach for characterizing multi-channel EEG signals and an innovative early warning algorithm for epilepsy seizures.
- Score: 9.625156607462127
- License:
- Abstract: Multi-channel EEG signals are commonly used for the diagnosis and assessment of diseases such as epilepsy. Currently, various EEG diagnostic algorithms based on deep learning have been developed. However, most research efforts focus solely on diagnosing and classifying current signal data but do not consider the prediction of future trends for early warning. Additionally, since multi-channel EEG can be essentially regarded as the spatio-temporal signal data received by detectors at different locations in the brain, how to construct spatio-temporal information representations of EEG signals to facilitate future trend prediction for multi-channel EEG becomes an important problem. This study proposes a multi-signal prediction algorithm based on generative diffusion models (EEG-DIF), which transforms the multi-signal forecasting task into an image completion task, allowing for comprehensive representation and learning of the spatio-temporal correlations and future developmental patterns of multi-channel EEG signals. Here, we employ a publicly available epilepsy EEG dataset to construct and validate the EEG-DIF. The results demonstrate that our method can accurately predict future trends for multi-channel EEG signals simultaneously. Furthermore, the early warning accuracy for epilepsy seizures based on the generated EEG data reaches 0.89. In general, EEG-DIF provides a novel approach for characterizing multi-channel EEG signals and an innovative early warning algorithm for epilepsy seizures, aiding in optimizing and enhancing the clinical diagnosis process. The code is available at https://github.com/JZK00/EEG-DIF.
Related papers
- A Tale of Single-channel Electroencephalogram: Devices, Datasets, Signal Processing, Applications, and Future Directions [10.206750309231783]
Single-channel electroencephalogram (EEG) is a cost-effective, comfortable, and non-invasive method for monitoring brain activity.
This paper focuses on development trends, devices, datasets, signal processing methods, recent applications, and future directions.
arXiv Detail & Related papers (2024-07-20T11:36:17Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
This work proposes a semi-supervised approach for detecting epileptic seizures from EEG data, utilizing a novel Deep Learning-based method called SincVAE.
Results indicate that SincVAE improves seizure detection in EEG data and is capable of identifying early seizures during the preictal stage as well as monitoring patients throughout the postictal stage.
arXiv Detail & Related papers (2024-06-25T13:21:01Z) - You Only Acquire Sparse-channel (YOAS): A Unified Framework for Dense-channel EEG Generation [7.507775056200206]
We develop a framework for generating dense-channel data from sparse-channel EEG signals.
YOAS consists of four sequential stages: Data Preparation, Data Preprocessing, Biased-EEG Generation, and Synthetic EEG Generation.
This breakthrough in dense-channel EEG signal generation from sparse-channel data opens new avenues for exploration in EEG signal processing and application.
arXiv Detail & Related papers (2024-06-21T16:04:14Z) - Study on spike-and-wave detection in epileptic signals using t-location-scale distribution and the K-nearest neighbors classifier [0.0]
We propose a k-nearest neighbors classification for epileptic EEG signals based on a t-location-scale statistical representation to detect spike-and-waves.
The proposed approach is demonstrated on a real dataset containing both spike-and-wave events and normal brain function signals.
arXiv Detail & Related papers (2024-05-21T21:52:08Z) - EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network [11.491355463353731]
We introduce the Retnet from natural language processing to EEG denoising.
Direct application of Retnet to EEG denoising is unfeasible due to the one-dimensional nature of EEG signals.
We propose the signal embedding method, transforming one-dimensional EEG signals into two dimensions for use as network inputs.
arXiv Detail & Related papers (2024-03-20T15:04:21Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - DreamDiffusion: Generating High-Quality Images from Brain EEG Signals [42.30835251506628]
DreamDiffusion is a novel method for generating high-quality images directly from brain electroencephalogram (EEG) signals.
The proposed method overcomes the challenges of using EEG signals for image generation, such as noise, limited information, and individual differences.
arXiv Detail & Related papers (2023-06-29T13:33:02Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.