論文の概要: AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration
- arxiv url: http://arxiv.org/abs/2410.17375v1
- Date: Tue, 22 Oct 2024 19:15:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:38.743600
- Title: AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration
- Title(参考訳): AMUSD: LLMアクセラレーションのための非同期マルチデバイス投機デコード
- Authors: Bradley McDanel,
- Abstract要約: 本稿では,AMUSD (Asynchronous Multi-device Speculative Decoding) を導入し,ドラフトを分離し,フェーズを検証することによって生成を高速化するシステムを提案する。
AMUSDは、1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機復号法とは異なり、どちらのモデルも別々のデバイス上で独立して予測を行うことができる。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$times$スピードアップを達成したことを示す。
- 参考スコア(独自算出の注目度): 0.3626013617212667
- License:
- Abstract: Large language models typically generate tokens autoregressively, using each token as input for the next. Recent work on Speculative Decoding has sought to accelerate this process by employing a smaller, faster draft model to more quickly generate candidate tokens. These candidates are then verified in parallel by the larger (original) verify model, resulting in overall speedup compared to using the larger model by itself in an autoregressive fashion. In this work, we introduce AMUSD (Asynchronous Multi-device Speculative Decoding), a system that further accelerates generation by decoupling the draft and verify phases into a continuous, asynchronous approach. Unlike conventional speculative decoding, where only one model (draft or verify) performs token generation at a time, AMUSD enables both models to perform predictions independently on separate devices (e.g., GPUs). We evaluate our approach over multiple datasets and show that AMUSD achieves an average 29% improvement over speculative decoding and up to 1.96$\times$ speedup over conventional autoregressive decoding, while achieving identical output quality. Our system is open-source and available at https://github.com/BradMcDanel/AMUSD/.
- Abstract(参考訳): 大規模言語モデルは一般的にトークンを自動回帰的に生成し、それぞれのトークンを次の入力として使用する。
投機的復号化に関する最近の研究は、より小さくより高速なドラフトモデルを用いて、より迅速に候補トークンを生成することによって、このプロセスを加速しようと試みている。
これらの候補は、より大きな(元)検証モデルによって並列に検証され、結果として、より大きなモデル自体を自己回帰的に使用するよりも全体的なスピードアップをもたらす。
本研究では,AMUSD(Asynchronous Multi-device Speculative Decoding)を導入し,ドラフトを分離し,フェーズを連続的かつ非同期なアプローチに検証することにより,生成をさらに高速化するシステムを提案する。
1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機的復号法とは異なり、AMUSDは2つのモデルが別々のデバイス(GPUなど)で独立して予測を行うことを可能にする。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$\times$スピードアップし、出力品質が同じであることを示す。
私たちのシステムはオープンソースで、https://github.com/BradMcDanel/AMUSD/で利用可能です。
関連論文リスト
- ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
提案するParallelSpecは,最先端の投機的復号化手法における自己回帰的起草戦略の代替となる。
投機段階における自己回帰的起草とは対照的に,効率的な投機モデルとして機能する並列投機を訓練する。
論文 参考訳(メタデータ) (2024-10-08T01:05:08Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.76times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
大規模な言語モデルは、様々なNLPタスクで印象的な機能を示してきたが、その生成は自動回帰的に時間を要する。
これは高速なドラフトモデルから候補セグメントを生成し、ターゲットモデルによって並列に検証する。
本稿では,複数の候補をドラフトモデルから抽出し,検証のためにバッチにまとめる手法を提案する。
対象モデルの分布を維持しつつ,効率的な多候補検証のためのアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-01-12T17:15:23Z) - DistillSpec: Improving Speculative Decoding via Knowledge Distillation [70.61777015900272]
投機的復号(SD)は、複数のトークンを生成するためにより高速なドラフトモデルを使用することで、大きな言語モデル推論を加速する。
本稿では,SDを適用する前に,知識蒸留を用いて,ドラフトモデルとターゲットモデルとの整合性を向上するDistillSpecを提案する。
DistillSpecは標準SDよりも10~45%のスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-10-12T16:21:04Z) - Accelerating Large Language Model Decoding with Speculative Sampling [9.851546623666588]
投機的サンプリング(英: Speculative sample)とは、変換器の呼び出し毎に複数のトークンを生成することで、変換器の復号を高速化するアルゴリズムである。
我々は、70億のパラメータ言語モデルであるChinchillaを用いて投機的サンプリングをベンチマークし、分散セットアップで2-2.5倍のデコード速度を達成する。
論文 参考訳(メタデータ) (2023-02-02T18:44:11Z) - Fast Inference from Transformers via Speculative Decoding [3.950600027250452]
Transformersのような大規模な自己回帰モデルからの推論は遅く、Kトークンの復号化はモデルのKシリアル実行を伴います。
本研究では,複数のトークンを並列に計算することで,自動回帰モデルから高速にサンプリングするアルゴリズムである投機的復号化を導入する。
論文 参考訳(メタデータ) (2022-11-30T17:33:28Z) - Fast Interleaved Bidirectional Sequence Generation [90.58793284654692]
左右方向と左右方向を同時に生成するデコーダを提案する。
一方向デコードのための標準アーキテクチャを簡単に双方向デコーダに変換することができることを示す。
我々のインターリーブ双方向デコーダ (IBDecoder) は標準変換器のモデル単純性と訓練効率を保っている。
論文 参考訳(メタデータ) (2020-10-27T17:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。