Cooperative Multi-Agent Constrained Stochastic Linear Bandits
- URL: http://arxiv.org/abs/2410.17382v1
- Date: Tue, 22 Oct 2024 19:34:53 GMT
- Title: Cooperative Multi-Agent Constrained Stochastic Linear Bandits
- Authors: Amirhossein Afsharrad, Parisa Oftadeh, Ahmadreza Moradipari, Sanjay Lall,
- Abstract summary: A network of $N$ agents communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $tau$.
We propose a safe distributed upper confidence bound algorithm, so called textitMA-OPLB, and establish a high probability bound on its $T$-round regret.
We show that our regret bound is of order $ mathcalOleft(fracdtau-c_0fraclog(NT)2sqrtNsqrtTlog (1/|lambda|)
- Score: 2.099922236065961
- License:
- Abstract: In this study, we explore a collaborative multi-agent stochastic linear bandit setting involving a network of $N$ agents that communicate locally to minimize their collective regret while keeping their expected cost under a specified threshold $\tau$. Each agent encounters a distinct linear bandit problem characterized by its own reward and cost parameters, i.e., local parameters. The goal of the agents is to determine the best overall action corresponding to the average of these parameters, or so-called global parameters. In each round, an agent is randomly chosen to select an action based on its current knowledge of the system. This chosen action is then executed by all agents, then they observe their individual rewards and costs. We propose a safe distributed upper confidence bound algorithm, so called \textit{MA-OPLB}, and establish a high probability bound on its $T$-round regret. MA-OPLB utilizes an accelerated consensus method, where agents can compute an estimate of the average rewards and costs across the network by communicating the proper information with their neighbors. We show that our regret bound is of order $ \mathcal{O}\left(\frac{d}{\tau-c_0}\frac{\log(NT)^2}{\sqrt{N}}\sqrt{\frac{T}{\log(1/|\lambda_2|)}}\right)$, where $\lambda_2$ is the second largest (in absolute value) eigenvalue of the communication matrix, and $\tau-c_0$ is the known cost gap of a feasible action. We also experimentally show the performance of our proposed algorithm in different network structures.
Related papers
- Federated Combinatorial Multi-Agent Multi-Armed Bandits [79.1700188160944]
This paper introduces a federated learning framework tailored for online optimization with bandit.
In this setting, agents subsets of arms, observe noisy rewards for these subsets without accessing individual arm information, and can cooperate and share information at specific intervals.
arXiv Detail & Related papers (2024-05-09T17:40:09Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with
General Utilities [12.104551746465932]
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints.
Our algorithm converges to a first-order stationary point (FOSP) at the rate of $mathcalOleft(T-2/3right)$.
In the sample-based setting, we demonstrate that, with high probability, our algorithm requires $widetildemathcalOleft(epsilon-3.5right)$ samples to achieve an $epsilon$-FOSP.
arXiv Detail & Related papers (2023-05-27T20:08:35Z) - Multi-Agent congestion cost minimization with linear function
approximation [0.0]
This work considers multiple agents traversing a network from a source node to the goal node.
Agents' objective is to find a path to the goal node with minimum overall cost in a decentralized way.
We propose a novel multi-agent congestion cost minimization algorithm.
arXiv Detail & Related papers (2023-01-26T08:45:44Z) - A Simple and Provably Efficient Algorithm for Asynchronous Federated
Contextual Linear Bandits [77.09836892653176]
We study federated contextual linear bandits, where $M$ agents cooperate with each other to solve a global contextual linear bandit problem with the help of a central server.
We consider the asynchronous setting, where all agents work independently and the communication between one agent and the server will not trigger other agents' communication.
We prove that the regret of textttFedLinUCB is bounded by $tildeO(dsqrtsum_m=1M T_m)$ and the communication complexity is $tildeO(dM
arXiv Detail & Related papers (2022-07-07T06:16:19Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
We propose a novel offline reinforcement learning algorithm called Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
PARTED decomposes the trajectory return into per-step proxy rewards via least-squares-based reward redistribution, and then performs pessimistic value based on the learned proxy reward.
To the best of our knowledge, PARTED is the first offline RL algorithm that is provably efficient in general MDP with trajectory-wise reward.
arXiv Detail & Related papers (2022-06-13T19:11:22Z) - Distributed Contextual Linear Bandits with Minimax Optimal Communication
Cost [48.288452411283444]
We study distributed contextual linear bandits with contexts, where $N$ agents act cooperatively to solve a linear bandit-optimization problem with $d$-dimensional features.
We propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server.
We prove that over $T$ rounds ($NT$ actions in total) the communication cost of DisBE-LUCB is only $tildemathcalO(dN)$ and its regret is at most $tildemathcalO
arXiv Detail & Related papers (2022-05-26T05:56:23Z) - Collaborative Multi-agent Stochastic Linear Bandits [28.268809091816287]
We study a collaborative multi-agent linear bandit setting, where $N$ agents that form a network communicate locally to minimize their overall regret.
All the agents observe the corresponding rewards of the played actions and use an accelerated consensus procedure to compute an estimate of the average of the rewards obtained by all the agents.
arXiv Detail & Related papers (2022-05-12T19:46:35Z) - Decentralized Multi-Agent Linear Bandits with Safety Constraints [31.67685495996986]
We study decentralized linear bandits, where a network of $N$ agents acts cooperatively to solve a linear bandit-optimization problem.
We propose DLUCB: a fully decentralized algorithm that minimizes the cumulative regret over the entire network.
We show that our ideas extend naturally to the emerging, albeit more challenging, setting of safe bandits.
arXiv Detail & Related papers (2020-12-01T07:33:00Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.