ProveRAG: Provenance-Driven Vulnerability Analysis with Automated Retrieval-Augmented LLMs
- URL: http://arxiv.org/abs/2410.17406v1
- Date: Tue, 22 Oct 2024 20:28:57 GMT
- Title: ProveRAG: Provenance-Driven Vulnerability Analysis with Automated Retrieval-Augmented LLMs
- Authors: Reza Fayyazi, Stella Hoyos Trueba, Michael Zuzak, Shanchieh Jay Yang,
- Abstract summary: Security analysts face the challenge of mitigating newly discovered vulnerabilities in real-time.
Over 300,000 Common Vulnerabilities and Exposures have been identified since 1999.
Over 25,000 vulnerabilities have been identified so far in 2024.
- Score: 1.7191671053507043
- License:
- Abstract: In cybersecurity, security analysts face the challenge of mitigating newly discovered vulnerabilities in real-time, with over 300,000 Common Vulnerabilities and Exposures (CVEs) identified since 1999. The sheer volume of known vulnerabilities complicates the detection of patterns for unknown threats. While LLMs can assist, they often hallucinate and lack alignment with recent threats. Over 25,000 vulnerabilities have been identified so far in 2024, which are introduced after popular LLMs' (e.g., GPT-4) training data cutoff. This raises a major challenge of leveraging LLMs in cybersecurity, where accuracy and up-to-date information are paramount. In this work, we aim to improve the adaptation of LLMs in vulnerability analysis by mimicking how analysts perform such tasks. We propose ProveRAG, an LLM-powered system designed to assist in rapidly analyzing CVEs with automated retrieval augmentation of web data while self-evaluating its responses with verifiable evidence. ProveRAG incorporates a self-critique mechanism to help alleviate omission and hallucination common in the output of LLMs applied in cybersecurity applications. The system cross-references data from verifiable sources (NVD and CWE), giving analysts confidence in the actionable insights provided. Our results indicate that ProveRAG excels in delivering verifiable evidence to the user with over 99% and 97% accuracy in exploitation and mitigation strategies, respectively. This system outperforms direct prompting and chunking retrieval in vulnerability analysis by overcoming temporal and context-window limitations. ProveRAG guides analysts to secure their systems more effectively while documenting the process for future audits.
Related papers
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
We introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability.
Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100% ASR on various open-source LLMs.
It exhibits strong attack transferability to closed-source models, achieving 99% ASR on GPT-3.5 and 49% ASR on GPT-4, despite being optimized solely on Llama3.
arXiv Detail & Related papers (2024-10-24T06:36:12Z) - Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing [5.644999288757871]
Large Language Models (LLMs) have demonstrated powerful code analysis capabilities, but their static training data and privacy risks limit their effectiveness.
We propose LSAST, a novel approach that integrates LLMs with SAST scanners to enhance vulnerability detection.
We set a new benchmark for static vulnerability analysis, offering a robust, privacy-conscious solution.
arXiv Detail & Related papers (2024-09-24T04:42:43Z) - PenHeal: A Two-Stage LLM Framework for Automated Pentesting and Optimal Remediation [18.432274815853116]
PenHeal is a two-stage LLM-based framework designed to autonomously identify and security vulnerabilities.
This paper introduces PenHeal, a two-stage LLM-based framework designed to autonomously identify and security vulnerabilities.
arXiv Detail & Related papers (2024-07-25T05:42:14Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - LLM-Assisted Static Analysis for Detecting Security Vulnerabilities [14.188864624736938]
Large language models (or LLMs) have shown impressive code generation capabilities but they cannot do complex reasoning over code to detect such vulnerabilities.
We propose IRIS, a neuro-symbolic approach that systematically combines LLMs with static analysis to perform whole-repository reasoning for security vulnerability detection.
arXiv Detail & Related papers (2024-05-27T14:53:35Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
We evaluate the effectiveness of 16 pre-trained Large Language Models on 5,000 code samples from five diverse security datasets.
Overall, LLMs show modest effectiveness in detecting vulnerabilities, obtaining an average accuracy of 62.8% and F1 score of 0.71 across datasets.
We find that advanced prompting strategies that involve step-by-step analysis significantly improve performance of LLMs on real-world datasets in terms of F1 score (by upto 0.18 on average)
arXiv Detail & Related papers (2023-11-16T13:17:20Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.