論文の概要: Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow
- arxiv url: http://arxiv.org/abs/2410.17460v1
- Date: Tue, 22 Oct 2024 22:35:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:27.384249
- Title: Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow
- Title(参考訳): Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow
- Authors: Thuan Pham, Xingpeng Li,
- Abstract要約: 本稿では、特にグラフニューラルネットワーク(GNN)を利用した機械学習(ML)に基づくアプローチを提案する。
GNNモデルは最適化段階に入る前に最高のトポロジを予測するためにオフラインで訓練される。
高速なオンラインポストML選択層も提案され、GNN予測を分析し、高い信頼性で予測されたNRソリューションのサブセットを選択する。
- 参考スコア(独自算出の注目度): 0.24554686192257422
- License:
- Abstract: Optimal power flow (OPF) has been used for real-time grid operations. Prior efforts demonstrated that utilizing flexibility from dynamic topologies will improve grid efficiency. However, this will convert the linear OPF into a mixed-integer linear programming network-reconfigured OPF (NR-OPF) problem, substantially increasing the computing time. Thus, a machine learning (ML)-based approach, particularly utilizing graph neural network (GNN), is proposed to accelerate the solution process. The GNN model is trained offline to predict the best topology before entering the optimization stage. In addition, this paper proposes an offline pre-ML filter layer to reduce GNN model size and training time while improving its accuracy. A fast online post-ML selection layer is also proposed to analyze GNN predictions and then select a subset of predicted NR solutions with high confidence. Case studies have demonstrated superior performance of the proposed GNN-accelerated NR-OPF method augmented with the proposed pre-ML and post-ML layers.
- Abstract(参考訳): リアルタイムグリッド操作にはOPF(Optimal Power Flow)が使用されている。
それまでの取り組みは、動的トポロジからの柔軟性を利用することで、グリッド効率が向上することを示した。
しかし、これは線形OPFを混合整数線形プログラミングネットワーク再構成OPF(NR-OPF)問題に変換し、計算時間を大幅に増加させる。
したがって、機械学習(ML)ベースのアプローチ、特にグラフニューラルネットワーク(GNN)を活用して、ソリューションプロセスの高速化を提案する。
GNNモデルは最適化段階に入る前に最高のトポロジを予測するためにオフラインで訓練される。
さらに,GNNモデルのサイズとトレーニング時間を削減し,精度を向上するオフラインプレMLフィルタ層を提案する。
高速なオンラインポストML選択層も提案され、GNN予測を分析し、高い信頼性で予測されたNRソリューションのサブセットを選択する。
ケーススタディでは,提案したGNN加速NR-OPF法において,プレML層とポストML層を併用した優れた性能を示した。
関連論文リスト
- N-1 Reduced Optimal Power Flow Using Augmented Hierarchical Graph Neural
Network [0.2900810893770134]
AHGNN対応のN-1 ROPFは、解の質を維持しながら計算時間を著しく短縮することができる。
ケーススタディは、提案したAHGNNと関連するN-1 ROPFが、解の質を維持しながら計算時間を短縮するのに非常に有効であることを証明している。
論文 参考訳(メタデータ) (2024-02-09T07:23:27Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - Reduced Optimal Power Flow Using Graph Neural Network [0.5076419064097734]
本稿では,グラフニューラルネットワーク(GNN)を用いたOPF問題の制約数を削減する手法を提案する。
GNNは、ノード、エッジ、ネットワークトポロジの機能を活用してパフォーマンスを最大化する革新的な機械学習モデルである。
ROPFに対するGNNの適用は、ソリューションの品質を維持しながら、計算時間を短縮できると結論付けている。
論文 参考訳(メタデータ) (2022-06-27T19:14:47Z) - Topology-aware Graph Neural Networks for Learning Feasible and Adaptive
ac-OPF Solutions [18.63828570982923]
我々は、ac-OPF問題の最適解を予測するために、新しいトポロジインフォームドグラフニューラルネットワーク(GNN)アプローチを開発した。
NNモデルにグリッドトポロジを組み込むため,提案したGNN-for-OPFフレームワークは,位置境界価格と電圧等級の局所性特性を利用する。
提案設計の利点は、モデル複雑性の低減、一般化可能性の向上、実現可能性の保証である。
論文 参考訳(メタデータ) (2022-05-16T23:36:37Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
最適な電力フロー(ACOPF)のソリューションを解決するために、ディープニューラルネットワーク(DNN)を提案します。
提案されたSIDNNは、幅広いOPFスキームと互換性がある。
他のLearning-to-OPFスキームとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-03-27T00:45:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。