論文の概要: An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems
- arxiv url: http://arxiv.org/abs/2410.17504v1
- Date: Wed, 23 Oct 2024 02:03:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:07.830522
- Title: An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems
- Title(参考訳): AIシステムのユーザ中心・知識記述のためのオントロジー可能なアプローチ
- Authors: Shruthi Chari,
- Abstract要約: 説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
- 参考スコア(独自算出の注目度): 0.3480973072524161
- License:
- Abstract: Explainable Artificial Intelligence (AI) focuses on helping humans understand the working of AI systems or their decisions and has been a cornerstone of AI for decades. Recent research in explainability has focused on explaining the workings of AI models or model explainability. There have also been several position statements and review papers detailing the needs of end-users for user-centered explainability but fewer implementations. Hence, this thesis seeks to bridge some gaps between model and user-centered explainability. We create an explanation ontology (EO) to represent literature-derived explanation types via their supporting components. We implement a knowledge-augmented question-answering (QA) pipeline to support contextual explanations in a clinical setting. Finally, we are implementing a system to combine explanations from different AI methods and data modalities. Within the EO, we can represent fifteen different explanation types, and we have tested these representations in six exemplar use cases. We find that knowledge augmentations improve the performance of base large language models in the contextualized QA, and the performance is variable across disease groups. In the same setting, clinicians also indicated that they prefer to see actionability as one of the main foci in explanations. In our explanations combination method, we plan to use similarity metrics to determine the similarity of explanations in a chronic disease detection setting. Overall, through this thesis, we design methods that can support knowledge-enabled explanations across different use cases, accounting for the methods in today's AI era that can generate the supporting components of these explanations and domain knowledge sources that can enhance them.
- Abstract(参考訳): 説明可能な人工知能(AI)は、人間がAIシステムの動作やその決定を理解するのを助けることに焦点を当てており、何十年にもわたってAIの基盤となっている。
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
ユーザ中心の説明可能性に対してエンドユーザの必要性を詳述したいくつかのポジションステートメントやレビュー論文もあるが、実装は少ない。
したがって、この論文はモデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
文献由来の説明型を表現するためのオントロジー(EO)を作成する。
臨床環境での文脈説明を支援するために,知識強化型質問応答パイプラインを実装した。
最後に、異なるAI手法とデータモダリティからの説明を組み合わせるシステムを実装している。
EO内では15種類の説明型を表現でき、6つの典型的なユースケースでこれらの表現を検証した。
知識の増大は、文脈化されたQAにおける基礎となる大規模言語モデルの性能を改善し、その性能は疾患グループ間で変動することがわかった。
同じ設定で、臨床医は、説明において、アクティビティを主要なファシの1つとして見ることを好むことも示した。
本手法では,慢性疾患検出設定における説明の類似性を決定するために,類似度指標を用いる計画である。
この論文を通じて、私たちは、さまざまなユースケースにわたる知識対応の説明をサポートする方法を設計し、これらの説明の支持コンポーネントを生成できる今日のAI時代のメソッドと、それらを強化することができるドメイン知識ソースを考慮に入れます。
関連論文リスト
- Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting [43.110187812734864]
視覚的説明(可用性マップ)、自然言語の説明、両方のモダリティの組み合わせの3種類の説明を評価した。
テキストに基づく説明は、高い信頼度をもたらすことが分かっており、従順マップと組み合わせることで軽減される。
また、説明の質、すなわち、それがどれだけ事実的に正しい情報であり、それがAIの正しさとどの程度一致しているかが、異なる説明タイプの有用性に大きく影響していることも観察します。
論文 参考訳(メタデータ) (2024-10-16T06:43:02Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - A Theoretical Framework for AI Models Explainability with Application in
Biomedicine [3.5742391373143474]
本稿では,文献に見いだせる内容の合成である説明の新たな定義を提案する。
我々は、忠実性(すなわち、モデルの内部動作と意思決定プロセスの真の説明である説明)と可否性(つまり、その説明がどの程度ユーザにとって説得力のあるように見えるか)の性質に、説明を適合させる。
論文 参考訳(メタデータ) (2022-12-29T20:05:26Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Explanation Ontology: A Model of Explanations for User-Centered AI [3.1783442097247345]
説明はしばしば、原則的でないポストホックな方法でAIシステムに追加されている。
これらのシステムの採用が拡大し、ユーザ中心の説明可能性に重点を置いているため、説明可能性について第一の考慮事項として扱う構造的表現が必要である。
我々は,説明の役割,システムとユーザ属性の双方をモデル化するための説明オントロジーを設計し,異なる文献に基づく説明型の範囲を設計する。
論文 参考訳(メタデータ) (2020-10-04T03:53:35Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。