論文の概要: Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation
- arxiv url: http://arxiv.org/abs/2410.17506v1
- Date: Wed, 23 Oct 2024 02:09:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:57.315088
- Title: Mitigating Graph Covariate Shift via Score-based Out-of-distribution Augmentation
- Title(参考訳): Score-based Out-of-distribution Augmentation によるグラフ共変量シフトの緩和
- Authors: Bohan Wang, Yurui Chang, Lu Lin,
- Abstract要約: トレーニングとテストデータセット間の分散シフトは、グラフ学習におけるモデルパフォーマンスを著しく損なう。
本稿では,全体のグラフパターンの妥当性と安定性を保ちつつ,未知の環境特徴を合成するスコアベースのグラフ生成戦略を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 16.59129444793973
- License:
- Abstract: Distribution shifts between training and testing datasets significantly impair the model performance on graph learning. A commonly-taken causal view in graph invariant learning suggests that stable predictive features of graphs are causally associated with labels, whereas varying environmental features lead to distribution shifts. In particular, covariate shifts caused by unseen environments in test graphs underscore the critical need for out-of-distribution (OOD) generalization. Existing graph augmentation methods designed to address the covariate shift often disentangle the stable and environmental features in the input space, and selectively perturb or mixup the environmental features. However, such perturbation-based methods heavily rely on an accurate separation of stable and environmental features, and their exploration ability is confined to existing environmental features in the training distribution. To overcome these limitations, we introduce a novel approach using score-based graph generation strategies that synthesize unseen environmental features while preserving the validity and stable features of overall graph patterns. Our comprehensive empirical evaluations demonstrate the enhanced effectiveness of our method in improving graph OOD generalization.
- Abstract(参考訳): トレーニングとテストデータセット間の分散シフトは、グラフ学習におけるモデルパフォーマンスを著しく損なう。
グラフ不変学習における一般的な因果的見解は、グラフの安定な予測的特徴がラベルに因果関係があることを示唆している。
特に、テストグラフの目に見えない環境に起因する共変量シフトは、アウト・オブ・ディストリビューション(OOD)の一般化に対する重要な必要性を浮き彫りにする。
共変量シフトに対処するために設計された既存のグラフ増強法は、入力空間の安定および環境特性を乱し、環境特徴を選択的に摂動または混合する。
しかし、このような摂動に基づく手法は、安定した環境特徴の正確な分離に大きく依存しており、その探索能力は、トレーニング分布における既存の環境特徴に限られている。
これらの制約を克服するために,グラフパターン全体の妥当性と安定性を保ちつつ,目に見えない環境特徴を合成するスコアベースのグラフ生成戦略を用いた新しいアプローチを導入する。
総合的な経験的評価は、グラフOODの一般化を改善する上で、我々の手法の強化効果を示す。
関連論文リスト
- Improving Graph Out-of-distribution Generalization on Real-world Data [25.328653597674197]
本稿では,環境-ラベル依存性と可変理性不変性の定理について述べる。
分析研究に基づき, 実世界データ上でのOODグラフの確率依存性と合理性」という, 変分推論に基づく新しい手法を紹介した。
論文 参考訳(メタデータ) (2024-07-14T13:48:25Z) - IENE: Identifying and Extrapolating the Node Environment for Out-of-Distribution Generalization on Graphs [10.087216264788097]
ノードレベルの環境識別と外挿技術に基づくグラフのOOD一般化手法であるIENEを提案する。
モデルが2つの粒度から不変性を同時に抽出する能力を強化し、一般化が向上する。
論文 参考訳(メタデータ) (2024-06-02T14:43:56Z) - Improving out-of-distribution generalization in graphs via hierarchical semantic environments [5.481047026874547]
グラフ毎に階層的な環境を生成する新しい手法を提案する。
我々は、同じ階層内の環境の多様性を学ぶために、我々のモデルを導く新しい学習目標を導入する。
我々のフレームワークは、それぞれIC50とEC50予測タスクの最高のベースラインに対して、1.29%と2.83%の改善を実現しています。
論文 参考訳(メタデータ) (2024-03-04T07:03:10Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
本稿では,ノードレベルの分散シフトの下で頑健なグラフニューラルネットワーク(GNN)をトレーニングするための,概念的に単純だが原則化されたアプローチを提案する。
本手法は,環境推定器と熟練GNN予測器を協調する因果推論に基づく新たな学習目標を提案する。
本モデルでは,様々な分散シフトによる一般化を効果的に向上し,グラフOOD一般化ベンチマーク上での最先端の精度を最大27.4%向上させることができる。
論文 参考訳(メタデータ) (2024-02-18T07:49:22Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Unleashing the Power of Graph Data Augmentation on Covariate
Distribution Shift [50.98086766507025]
本稿では,AIA(Adversarial Invariant Augmentation)という,シンプルで効率の良いデータ拡張戦略を提案する。
AIAは、拡張プロセス中に元の安定した特徴を同時に保存しながら、新しい環境をエクスポーレーションし、生成することを目的としている。
論文 参考訳(メタデータ) (2022-11-05T07:55:55Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
グラフの複素性質は、OOD一般化の不変原理の採用を妨げている。
OODメソッドでしばしば必要とされるドメインや環境のパーティションは、グラフを得るために取得するのにコストがかかる。
コントラスト戦略を用いて,このプロセスを明確にモデル化する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-11T04:38:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Stable Prediction on Graphs with Agnostic Distribution Shift [105.12836224149633]
グラフニューラルネットワーク(GNN)は、ランダムにトレーニングとテストデータを分離した様々なグラフタスクに有効であることが示されている。
しかし、実際のアプリケーションでは、トレーニンググラフの分布はテストグラフとは異なるかもしれない。
本稿では,グラフ上での局所的およびグローバル的に安定な学習と予測を可能にする,GNNのための新しい安定な予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-08T02:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。