Congestion Forecast for Trains with Railroad-Graph-based Semi-Supervised Learning using Sparse Passenger Reports
- URL: http://arxiv.org/abs/2410.17510v1
- Date: Wed, 23 Oct 2024 02:25:53 GMT
- Title: Congestion Forecast for Trains with Railroad-Graph-based Semi-Supervised Learning using Sparse Passenger Reports
- Authors: Soto Anno, Kota Tsubouchi, Masamichi Shimosaka,
- Abstract summary: We present rail congestion forecasting using reports from passengers collected through a transit application.
We propose a semi-supervised method for congestion forecasting for trains, or SURCONFORT.
Our key idea is twofold: firstly, we adopt semi-supervised learning to leverage sparsely labeled data and many unlabeled data.
- Score: 7.89432183206555
- License:
- Abstract: Forecasting rail congestion is crucial for efficient mobility in transport systems. We present rail congestion forecasting using reports from passengers collected through a transit application. Although reports from passengers have received attention from researchers, ensuring a sufficient volume of reports is challenging due to passenger's reluctance. The limited number of reports results in the sparsity of the congestion label, which can be an issue in building a stable prediction model. To address this issue, we propose a semi-supervised method for congestion forecasting for trains, or SURCONFORT. Our key idea is twofold: firstly, we adopt semi-supervised learning to leverage sparsely labeled data and many unlabeled data. Secondly, in order to complement the unlabeled data from nearby stations, we design a railway network-oriented graph and apply the graph to semi-supervised graph regularization. Empirical experiments with actual reporting data show that SURCONFORT improved the forecasting performance by 14.9% over state-of-the-art methods under the label sparsity.
Related papers
- DelayPTC-LLM: Metro Passenger Travel Choice Prediction under Train Delays with Large Language Models [31.509436717815102]
This paper proposes a novel Passenger Travel Choice prediction framework under metro delays with the Large Language Model (DelayPTC-LLM)
A comparative analysis of DelayPTC-LLM with traditional prediction models demonstrates the superior capability of LLMs in handling complex, sparse datasets commonly encountered under disruption of transportation systems.
arXiv Detail & Related papers (2024-09-28T13:09:15Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
Our solution ranks first in the Argoverse 2 End-to-end Forecasting Challenge, with 63.82 mAPf.
We depart from the current trend of tackling this task via end-to-end training from perception to forecasting, and instead use a modular approach.
We surpass forecasting results by +17.1 points over last year's winner and by +13.3 points over this year's runner-up.
arXiv Detail & Related papers (2024-06-12T11:50:51Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - On Designing Day Ahead and Same Day Ridership Level Prediction Models
for City-Scale Transit Networks Using Noisy APC Data [0.0]
We propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership.
We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN.
arXiv Detail & Related papers (2022-10-10T19:50:59Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Spatial-Temporal Attention Fusion Network for short-term passenger flow
prediction on holidays in urban rail transit systems [9.725264855780482]
The short term passenger flow prediction of the urban rail transit system is of great significance for traffic operation and management.
Most of the existing models mainly predict the passenger flow on general weekdays or weekends.
We propose a deep learning-based model named Spatial Temporal Attention Fusion Network for short-term passenger flow prediction on holidays.
arXiv Detail & Related papers (2022-02-27T01:06:24Z) - Public Transit for Special Events: Ridership Prediction and Train
Optimization [10.531110013870792]
It is important for transit providers to understand their impact on disruptions, delays, and fare revenues.
This paper proposes a suite of data-driven techniques for evaluating, anticipating, and managing the performance of transit systems during recurring congestion peaks due to special events.
arXiv Detail & Related papers (2021-06-09T19:52:18Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Crowding Prediction of In-Situ Metro Passengers Using Smart Card Data [11.781685156308475]
We propose a statistical model to predict in-situ passenger density inside a closed metro system.
Based on the prediction results, we are able to provide accurate prediction of in-situ passenger density for a future time point.
arXiv Detail & Related papers (2020-09-07T04:07:37Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
We propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the realistic topology of the studied metro system.
A similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation.
arXiv Detail & Related papers (2020-01-14T16:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.