Advancing Interpretability in Text Classification through Prototype Learning
- URL: http://arxiv.org/abs/2410.17546v2
- Date: Thu, 24 Oct 2024 04:21:54 GMT
- Title: Advancing Interpretability in Text Classification through Prototype Learning
- Authors: Bowen Wei, Ziwei Zhu,
- Abstract summary: ProtoLens is a prototype-based model that provides fine-grained, sub-sentence level interpretability for text classification.
ProtoLens uses a Prototype-aware Span Extraction module to identify relevant text spans.
ProtoLens provides interpretable predictions while maintaining competitive accuracy.
- Score: 1.9526476410335776
- License:
- Abstract: Deep neural networks have achieved remarkable performance in various text-based tasks but often lack interpretability, making them less suitable for applications where transparency is critical. To address this, we propose ProtoLens, a novel prototype-based model that provides fine-grained, sub-sentence level interpretability for text classification. ProtoLens uses a Prototype-aware Span Extraction module to identify relevant text spans associated with learned prototypes and a Prototype Alignment mechanism to ensure prototypes are semantically meaningful throughout training. By aligning the prototype embeddings with human-understandable examples, ProtoLens provides interpretable predictions while maintaining competitive accuracy. Extensive experiments demonstrate that ProtoLens outperforms both prototype-based and non-interpretable baselines on multiple text classification benchmarks. Code and data are available at \url{https://anonymous.4open.science/r/ProtoLens-CE0B/}.
Related papers
- Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
Prototypical part learning is emerging as a promising approach for making semantic segmentation interpretable.
We propose a method for interpretable semantic segmentation that leverages multi-scale image representation for prototypical part learning.
Experiments conducted on Pascal VOC, Cityscapes, and ADE20K demonstrate that the proposed method increases model sparsity, improves interpretability over existing prototype-based methods, and narrows the performance gap with the non-interpretable counterpart models.
arXiv Detail & Related papers (2024-09-14T17:52:59Z) - Sign Language Translation with Iterative Prototype [104.76761930888604]
IP-SLT is a simple yet effective framework for sign language translation (SLT)
Our idea mimics the behavior of human reading, where a sentence can be digested repeatedly, till reaching accurate understanding.
arXiv Detail & Related papers (2023-08-23T15:27:50Z) - Contrastive Learning with Prompt-derived Virtual Semantic Prototypes for
Unsupervised Sentence Embedding [24.350264932134078]
We propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP)
We construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of prompts.
Using a contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes.
arXiv Detail & Related papers (2022-11-07T07:50:30Z) - ProtoTEx: Explaining Model Decisions with Prototype Tensors [27.779971257213553]
ProtoTEx is a novel white-box NLP classification architecture based on prototype networks.
We describe a novel interleaved training algorithm that effectively handles classes characterized by the absence of indicative features.
On a propaganda detection task, ProtoTEx accuracy matches BART-large and exceeds BERT-large with the added benefit of providing faithful explanations.
arXiv Detail & Related papers (2022-04-11T22:08:45Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - ProtoryNet - Interpretable Text Classification Via Prototype
Trajectories [4.768286204382179]
We propose a novel interpretable deep neural network for text classification, called ProtoryNet.
ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence.
After prototype pruning, the resulting ProtoryNet models only need less than or around 20 prototypes for all datasets.
arXiv Detail & Related papers (2020-07-03T16:00:26Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
Prototype-driven text generation is inefficient at test time as a result of needing to store and index the entire training corpus.
We propose a novel generative model that automatically learns a sparse prototype support set that achieves strong language modeling performance.
In experiments, our model outperforms previous prototype-driven language models while achieving up to a 1000x memory reduction.
arXiv Detail & Related papers (2020-06-29T19:41:26Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.