Universal Entanglement Revival of Topological Origin
- URL: http://arxiv.org/abs/2410.17562v1
- Date: Wed, 23 Oct 2024 05:10:33 GMT
- Title: Universal Entanglement Revival of Topological Origin
- Authors: Dongni Chen, Stefano Chesi, Mahn-Soo Choi,
- Abstract summary: We analyze the dynamics of entanglement in dissipative fermionic and bosonic Su-Schrieffer-Heeger (SSH) models.
When the decoherence channel preserves the chiral symmetry, they exhibit a revival of entanglement in a wide range of parameters.
- Score: 0.0
- License:
- Abstract: We have analyzed the dynamics of entanglement in dissipative fermionic and bosonic Su-Schrieffer-Heeger (SSH) models and found that, when the decoherence channel preserves the chiral symmetry, they exhibit a revival of entanglement in a wide range of parameters. This behavior only emerges in the topological phase, with the visibility of the revival dropping to zero at the phase boundary. Furthermore, the revival acquires a universal character once the system size exceeds the localization length of the edge modes. Our findings indicate that the universal entanglement revival has its origin in the topological properties of the SSH model. These dynamical properties may be experimentally accessible, for example, using photonic quantum computers.
Related papers
- Predicting Topological Entanglement Entropy in a Rydberg analog simulator [0.0]
This work focuses on the dynamical preparation of a quantum-spin-liquid state on a Rydberg-atom simulator.
The flexibility of our approach does not only allow one to match the physically correct form of the Rydberg-atom Hamiltonian but also the relevant lattice topology.
We show that, while the simulated state exhibits (global) topological order and local properties resembling those of a resonating-valence-bond (RVB) state, it lacks the latter's characteristic topological entanglement entropy signature.
arXiv Detail & Related papers (2024-06-28T12:27:42Z) - Long-range entanglement and topological excitations [0.0]
Topological order comes in different forms, and its classification and detection is an important field of modern research.
We show that the Disconnected Entanglement Entropy, a measure originally introduced to identify topological phases, is also able to unveil the long-range entanglement carried by a single excitation.
arXiv Detail & Related papers (2023-10-24T18:00:07Z) - Characterizing Floquet topological phases by quench dynamics: A
multiple-subsystem approach [11.15439488946414]
We investigate the dynamical characterization theory for periodically driven systems in which Floquet topology can be fully detected.
We propose a more flexible scheme to characterize a generic class of $d$-dimensional Floquet topological phases.
This study provides an immediately implementable approach for dynamically classifying Floquet topological phases in ultracold atoms or other quantum simulators.
arXiv Detail & Related papers (2023-10-12T15:23:44Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Topological and dynamical features of periodically driven spin ladders [0.0]
We study periodically driven spin ladders as clean quasi-one-dimensional systems with spin-spin interaction in the rung direction.
We find that such systems display subharmonic magnetization dynamics reminiscent to that of discrete time crystals (DTCs) at finite system sizes.
Special emphasis is placed on how the coupling in the rung direction of the ladder prevents degeneracy from occurring between states differing by a single spin excitation.
arXiv Detail & Related papers (2020-12-07T04:12:59Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.