Exploring Topological and Localization Phenomena in SSH Chains under Generalized AAH Modulation: A Computational Approach
- URL: http://arxiv.org/abs/2506.10195v1
- Date: Wed, 11 Jun 2025 21:31:07 GMT
- Title: Exploring Topological and Localization Phenomena in SSH Chains under Generalized AAH Modulation: A Computational Approach
- Authors: Souvik Ghosh, Sayak Roy,
- Abstract summary: The Su-Schrieffer-Heeger (SSH) model serves as a canonical example of a one-dimensional topological insulator.<n>This paper explores the interplay between topology, quasi-periodic disorder, non-Hermiticity, and time-dependent driving.
- Score: 0.6445605125467574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Su-Schrieffer-Heeger (SSH) model serves as a canonical example of a one-dimensional topological insulator, yet its behavior under more complex, realistic conditions remains a fertile ground for research. This paper presents a comprehensive computational investigation into generalized SSH models, exploring the interplay between topology, quasi-periodic disorder, non-Hermiticity, and time-dependent driving. Using exact diagonalization and specialized numerical solvers, we map the system's phase space through its spectral properties and localization characteristics, quantified by the Inverse Participation Ratio (IPR). We demonstrate that while the standard SSH model exhibits topologically protected edge states, these are destroyed by a localization transition induced by strong Aubry-Andr\'e-Harper (AAH) modulation. Further, we employ unsupervised machine learning (PCA) to autonomously classify the system's phases, revealing that strong localization can obscure underlying topological signatures. Extending the model beyond Hermiticity, we uncover the non-Hermitian skin effect, a dramatic localization of all bulk states at a boundary. Finally, we apply a periodic Floquet drive to a topologically trivial chain, successfully engineering a Floquet topological insulator characterized by the emergence of anomalous edge states at the boundaries of the quasi-energy zone. These findings collectively provide a multi-faceted view of the rich phenomena hosted in generalized 1D topological systems.
Related papers
- Floquet Non-Bloch Formalism for a Non-Hermitian Ladder: From Theoretical Framework to Topolectrical Circuits [0.0]
Periodically driven systems intertwined with non-Hermiticity opens a rich arena for topological phases that transcend conventional Hermitian limits.<n>We analytically derive an effective Floquet Hamiltonian and formulate the generalized Brillouin zone for a periodically driven quasi-one-dimensional system.<n>Our study demonstrates that the skin effect remains robust across a broad range of driving parameters, and is notably amplified in the low-frequency regime.
arXiv Detail & Related papers (2025-07-31T17:31:02Z) - A Solvable Semi-infinite Fock-state-lattice SSH Model: the Stable Topological Zero Mode and the Non-Hermitian Bound Effect [0.249660468924754]
We study the topological features of a semi-infinite FSL-based Su-Schrieffer-Heeger (SSH) model in both Hermitian and non-Hermitian realms.<n>We find a more stable topological zero mode than the conventional SSH model, originating from the bound state at the inherent domain wall.<n>Our work takes the first step towards exploring unique topological properties in infinite anisotropic topological models based on the promising FSL simulator.
arXiv Detail & Related papers (2025-06-21T13:12:08Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.<n>These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.<n>We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Universal Entanglement Revival of Topological Origin [0.0]
We analyze the dynamics of entanglement in dissipative fermionic and bosonic Su-Schrieffer-Heeger (SSH) models.
When the decoherence channel preserves the chiral symmetry, they exhibit a revival of entanglement in a wide range of parameters.
arXiv Detail & Related papers (2024-10-23T05:10:33Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Mapping Topology-Localization Phase Diagram with Quasiperiodic Disorder Using a Programmable Superconducting Simulator [14.196635156326211]
We map out and identify various trivial and topological phases with extended, critical, and localized bulk states.
Our results shed new light on the investigation of the topological and localization phenomena in condensed-matter physics.
arXiv Detail & Related papers (2023-01-28T09:19:41Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Delocalization of topological edge states [0.0]
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at system's boundaries.
This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other.
arXiv Detail & Related papers (2021-03-08T09:13:48Z) - Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems [0.0]
The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
arXiv Detail & Related papers (2020-10-28T10:15:40Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.