論文の概要: Towards Effective Data-Free Knowledge Distillation via Diverse Diffusion Augmentation
- arxiv url: http://arxiv.org/abs/2410.17606v1
- Date: Wed, 23 Oct 2024 07:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:05.520845
- Title: Towards Effective Data-Free Knowledge Distillation via Diverse Diffusion Augmentation
- Title(参考訳): 拡散拡大による効果的なデータフリーな知識蒸留を目指して
- Authors: Muquan Li, Dongyang Zhang, Tao He, Xiurui Xie, Yuan-Fang Li, Ke Qin,
- Abstract要約: データフリー知識蒸留(DFKD)は、モデル圧縮の領域において重要な技術である。
本稿では,多種拡散増強(DDA)によるDFKDの革新的アプローチを紹介する。
CIFAR-10, CIFAR-100, Tiny-ImageNetデータセットの総合的な実験により, 本手法の優れた性能が示された。
- 参考スコア(独自算出の注目度): 20.556083321381514
- License:
- Abstract: Data-free knowledge distillation (DFKD) has emerged as a pivotal technique in the domain of model compression, substantially reducing the dependency on the original training data. Nonetheless, conventional DFKD methods that employ synthesized training data are prone to the limitations of inadequate diversity and discrepancies in distribution between the synthesized and original datasets. To address these challenges, this paper introduces an innovative approach to DFKD through diverse diffusion augmentation (DDA). Specifically, we revise the paradigm of common data synthesis in DFKD to a composite process through leveraging diffusion models subsequent to data synthesis for self-supervised augmentation, which generates a spectrum of data samples with similar distributions while retaining controlled variations. Furthermore, to mitigate excessive deviation in the embedding space, we introduce an image filtering technique grounded in cosine similarity to maintain fidelity during the knowledge distillation process. Comprehensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets showcase the superior performance of our method across various teacher-student network configurations, outperforming the contemporary state-of-the-art DFKD methods. Code will be available at:https://github.com/SLGSP/DDA.
- Abstract(参考訳): データフリー知識蒸留(DFKD)は、モデル圧縮の領域において重要な技術として登場し、元のトレーニングデータへの依存を大幅に減らした。
それにもかかわらず、合成トレーニングデータを利用する従来のDFKD手法は、合成データセットとオリジナルデータセットの分散において、不適切な多様性と相違性の制限が生じる傾向にある。
これらの課題に対処するために,多様な拡散増強(DDA)を通じてDFKDに革新的なアプローチを導入する。
具体的には、DFKDにおける共通データ合成のパラダイムを、データ合成後の拡散モデルを利用して合成プロセスに修正し、制御されたバリエーションを維持しながら、類似した分布を持つデータサンプルのスペクトルを生成する。
さらに, 埋込み空間における過度な偏差を軽減するため, 知識蒸留過程における忠実さを維持するために, コサイン類似性に基づく画像フィルタリング手法を導入する。
CIFAR-10, CIFAR-100, Tiny-ImageNetデータセットを用いた総合的な実験により, 従来のDFKD法よりも優れた性能を示した。
コードは、https://github.com/SLGSP/DDA.comから入手できる。
関連論文リスト
- Mitigating Embedding Collapse in Diffusion Models for Categorical Data [52.90687881724333]
我々は,学習を安定させる埋め込み空間内の連続拡散フレームワークであるCATDMを紹介する。
ベンチマーク実験により、CATDMは埋没崩壊を緩和し、FFHQ、LSUN教会、LSUNベッドルームにおいて優れた結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-10-18T09:12:33Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Data-Free Federated Class Incremental Learning with Diffusion-Based Generative Memory [27.651921957220004]
拡散型生成メモリ(DFedDGM)を用いた新しいデータフリーフェデレーションクラスインクリメンタルラーニングフレームワークを提案する。
FLにおける一般の非IID問題を軽減するために拡散モデルの訓練を支援するために,新しいバランスの取れたサンプルを設計する。
また、情報理論の観点からエントロピーに基づくサンプルフィルタリング手法を導入し、生成サンプルの品質を向上させる。
論文 参考訳(メタデータ) (2024-05-22T20:59:18Z) - De-confounded Data-free Knowledge Distillation for Handling Distribution Shifts [32.1016787150064]
Data-Free Knowledge Distillation (DFKD)は、従来のトレーニングデータに頼ることなく、実際のデプロイメントを強化するために、高性能な小型モデルをトレーニングする有望なタスクである。
既存の方法は、合成データやサンプルデータを利用することで、プライベートデータへの依存を避けるのが一般的である。
本稿では,このような変化の影響から学生モデルを遠ざけるために,因果推論を用いた新しい視点を提案する。
論文 参考訳(メタデータ) (2024-03-28T16:13:22Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Cross-feature Contrastive Loss for Decentralized Deep Learning on
Heterogeneous Data [8.946847190099206]
異種データに基づく分散学習のための新しい手法を提案する。
一対の隣接するエージェントのクロスフィーチャーは、他のエージェントのモデルパラメータに関するエージェントのデータから得られる特徴である。
実験の結果,提案手法は異種データを用いた分散学習手法に比べて性能(テスト精度が0.2~4%向上)が優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-24T14:48:23Z) - Towards Efficient Deep Hashing Retrieval: Condensing Your Data via
Feature-Embedding Matching [7.908244841289913]
最先端の深層ハッシュ検索モデルのトレーニングに要する費用は増加している。
最先端のデータセット蒸留法は、すべての深層ハッシュ検索法に拡張できない。
合成集合と実集合との特徴埋め込みをマッチングすることにより,これらの制約に対処する効率的な凝縮フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T13:23:55Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
データフリー知識蒸留(DFKD)は、元のトレーニングデータの依存をなくし、知識蒸留を行う。
本稿では,PmptDFD(PromptDFD)と呼ばれるプロンプトベースの手法を提案する。
本実験で示すように, 本手法は, 合成品質を大幅に向上し, 蒸留性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-05-16T08:56:53Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Up to 100x Faster Data-free Knowledge Distillation [52.666615987503995]
我々はFastDFKDを導入し、FastDFKDを桁違いに高速化する。
データの集合を個別に最適化する従来の方法とは異なり、共通の特徴を求めるメタシンセサイザーを学習することを提案する。
FastDFKDはほんの数ステップでデータ合成を実現し、データフリートレーニングの効率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-12-12T14:56:58Z) - Preventing Catastrophic Forgetting and Distribution Mismatch in
Knowledge Distillation via Synthetic Data [5.064036314529226]
本稿では,データフリーなKDフレームワークを提案する。
実験により,KDを用いて得られた学生モデルの精度を,最先端の手法と比較して向上できることが実証された。
論文 参考訳(メタデータ) (2021-08-11T08:11:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。