論文の概要: Incremental Learning of Affordances using Markov Logic Networks
- arxiv url: http://arxiv.org/abs/2410.17624v1
- Date: Wed, 23 Oct 2024 07:29:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:42.249242
- Title: Incremental Learning of Affordances using Markov Logic Networks
- Title(参考訳): マルコフ論理ネットワークを用いた単語の増分学習
- Authors: George Potter, Gertjan Burghouts, Joris Sijs,
- Abstract要約: Affordancesは、ロボットが周囲のセマンティックな理解を行えるようにする。
MLN-CLAは、知識を保持し、変化した知識のみを更新し、MLNを再訓練することで、様々な知識領域における新しい関係を学習する。
MLN-CLAは蓄積学習やゼロショット推論に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Affordances enable robots to have a semantic understanding of their surroundings. This allows them to have more acting flexibility when completing a given task. Capturing object affordances in a machine learning model is a difficult task, because of their dependence on contextual information. Markov Logic Networks (MLN) combine probabilistic reasoning with logic that is able to capture such context. Mobile robots operate in partially known environments wherein unseen object affordances can be observed. This new information must be incorporated into the existing knowledge, without having to retrain the MLN from scratch. We introduce the MLN Cumulative Learning Algorithm (MLN-CLA). MLN-CLA learns new relations in various knowledge domains by retaining knowledge and only updating the changed knowledge, for which the MLN is retrained. We show that MLN-CLA is effective for accumulative learning and zero-shot affordance inference, outperforming strong baselines.
- Abstract(参考訳): Affordancesは、ロボットが周囲のセマンティックな理解を行えるようにする。
これにより、与えられたタスクを完了すると、より柔軟な行動が可能になる。
機械学習モデルでオブジェクトの余裕を捉えることは、コンテキスト情報に依存しているため、難しい作業である。
Markov Logic Networks (MLN) は確率論的推論とそのようなコンテキストをキャプチャできる論理を組み合わせる。
移動ロボットは、見えない物体の余裕を観察できる、部分的に知られている環境で動作している。
この新たな情報は、MLNをゼロから再訓練することなく、既存の知識に組み込まれなければならない。
MLN累積学習アルゴリズム(MLN-CLA)を紹介する。
MLN-CLAは、知識を保持し、変化した知識のみを更新し、MLNを再訓練することで、様々な知識領域における新しい関係を学習する。
MLN-CLAは蓄積学習やゼロショット推論に有効であることを示す。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
大規模言語モデル(LLM)が最近登場し、認知タスクにおけるほぼ人間レベルのパフォーマンスを実証している。
次世代AI-in-the-loop」の概念を提案する。
LLMとMLモデルを組み合わせることで、それぞれの能力を活用し、どちらのモデルよりも優れた結果が得られると考えています。
論文 参考訳(メタデータ) (2024-06-06T17:25:07Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
そこで我々は,そのような推論能力をより小さなLMに蒸留する,適切な学習手法を提案する。
対話型多ラウンド学習パラダイムを構築することにより,理科教員としてのLLMの可能性を活用する。
より小さなLMの推論可能性を活用するために,学生が自作ミスから学習する動機付けを目的とした自己回帰学習を提案する。
論文 参考訳(メタデータ) (2023-10-20T07:50:10Z) - Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs [19.0797968186656]
大規模言語モデル(LLM)は汎用的であり、その創発的能力と一般化性のために異なるタスクを解くことができる。
以前の研究では、グラフニューラルネットワーク(GNN)のような追加モジュールは、外部の知識ベースから取得した知識に基づいて訓練されている。
論文 参考訳(メタデータ) (2023-09-06T15:55:01Z) - Link-Context Learning for Multimodal LLMs [40.923816691928536]
リンクコンテキスト学習(LCL)はMLLMの学習能力を高めるために「原因と効果からの推論」を強調する。
LCLは、アナログだけでなく、データポイント間の因果関係も識別するようモデルに導出する。
本手法の評価を容易にするため,ISEKAIデータセットを提案する。
論文 参考訳(メタデータ) (2023-08-15T17:33:24Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
我々はknOwledge ReasOning empowered Language Model (OREO-LM)を提案する。
OREO-LMは、既存のTransformerベースのLMに柔軟に接続できる新しい知識相互作用層で構成されている。
クローズド・ブック・セッティングにおいて,最先端の成果が得られ,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-15T18:26:26Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。