論文の概要: Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
- arxiv url: http://arxiv.org/abs/2410.17644v2
- Date: Fri, 25 Oct 2024 15:42:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:02:08.131980
- Title: Comprehensive Evaluation of Matrix Factorization Models for Collaborative Filtering Recommender Systems
- Title(参考訳): 協調フィルタリングレコメンダシステムにおける行列分解モデルの包括的評価
- Authors: Jesús Bobadilla, Jorge Dueñas-Lerín, Fernando Ortega, Abraham Gutierrez,
- Abstract要約: 行列分解モデルは、現在の商用共同フィルタリングRecommender Systemsの中核である。
テストでは、予測、順序付きリストと順序なしリストの推薦、新規性、多様性など、さまざまな精度と精度の高い品質対策がテストされている。
- 参考スコア(独自算出の注目度): 42.362388367152256
- License:
- Abstract: Matrix factorization models are the core of current commercial collaborative filtering Recommender Systems. This paper tested six representative matrix factorization models, using four collaborative filtering datasets. Experiments have tested a variety of accuracy and beyond accuracy quality measures, including prediction, recommendation of ordered and unordered lists, novelty, and diversity. Results show each convenient matrix factorization model attending to their simplicity, the required prediction quality, the necessary recommendation quality, the desired recommendation novelty and diversity, the need to explain recommendations, the adequacy of assigning semantic interpretations to hidden factors, the advisability of recommending to groups of users, and the need to obtain reliability values. To ensure the reproducibility of the experiments, an open framework has been used, and the implementation code is provided.
- Abstract(参考訳): 行列分解モデルは、現在の商用共同フィルタリングRecommender Systemsの中核である。
本研究では、4つの協調フィルタリングデータセットを用いて6つの行列因数分解モデルを検証した。
実験では、予測、順序付きリストと順序なしリストの推薦、新規性、多様性など、さまざまな精度と精度の高い品質測定をテストしている。
その結果, 簡便な行列分解モデル, 必要な予測品質, 必要な推奨品質, 望ましい推奨ノベルティと多様性, 推奨を説明する必要性, 隠された要因に意味論的解釈を割り当てる適性, ユーザグループへの推薦の適応性, 信頼性値の取得の必要性が示された。
実験の再現性を確保するため、オープンフレームワークを使用し、実装コードを提供する。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - LLM-enhanced Reranking in Recommender Systems [49.969932092129305]
リグレードはレコメンデーションシステムにおいて重要な要素であり、レコメンデーションアルゴリズムの出力を精査する上で重要な役割を果たす。
そこで我々は,様々な格付け基準をシームレスに統合する包括的格付けフレームワークを提案する。
カスタマイズ可能な入力機構も統合されており、言語モデルのフォーカスを特定の再配置のニーズに合わせることができる。
論文 参考訳(メタデータ) (2024-06-18T09:29:18Z) - CF Recommender System Based on Ontology and Nonnegative Matrix Factorization (NMF) [0.0]
この作業は、レコメンダシステムのデータ空間と精度の問題に対処する。
実装されたアプローチは、CF提案の空白度を効果的に削減し、その正確性を改善し、より関連性の高い項目を推奨する。
論文 参考訳(メタデータ) (2024-05-31T14:50:53Z) - Diversely Regularized Matrix Factorization for Accurate and Aggregately
Diversified Recommendation [15.483426620593013]
DivMF(Diversely Regularized Matrix Factorization)は、多彩な推薦のための新しい行列分解法である。
我々は,DivMFが総合的に多様化した推薦において最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2022-10-19T08:49:39Z) - Restricted Bernoulli Matrix Factorization: Balancing the trade-off
between prediction accuracy and coverage in classification based
collaborative filtering [45.335821132209766]
本稿では,Restricted Bernoulli Matrix Factorization (ResBeMF) を提案する。
提案モデルでは,他のレコメンデーションモデルと比較して,品質指標のバランスが良好である。
論文 参考訳(メタデータ) (2022-10-05T13:48:19Z) - Introducing a Framework and a Decision Protocol to Calibrate Recommender
Systems [0.0]
本稿では,ジャンルの校正バランスを考慮したレコメンデーションリスト作成手法を提案する。
主な主張は、キャリブレーションはより公平なレコメンデーションを生み出すために肯定的に貢献できるということである。
本稿では,1000以上の校正システムの組み合わせを生成するための概念的フレームワークと決定プロトコルを提案する。
論文 参考訳(メタデータ) (2022-04-07T19:30:55Z) - Latent Unexpected Recommendations [89.2011481379093]
ユーザとアイテムの埋め込みの潜伏した空間における予測性をモデル化し、新しいレコメンデーションと歴史的購入の間の隠れた複雑な関係を捉えることを提案する。
さらに,ハイブリッドユーティリティ機能の構築と,提案モデルに基づく予期せぬ推薦を行うための新しい潜在クロージャ(LC)手法を開発した。
論文 参考訳(メタデータ) (2020-07-27T02:39:30Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
推奨モデルは、基礎となるユーザの関心を効果的に見積もり、将来の行動を予測することができる。
2つの表現モデルを含む帰納的協調フィルタリングフレームワークを提案する。
本モデルでは,限られたトレーニングレーティングと新規の未確認ユーザを対象に,数ショットのユーザに対して有望なレコメンデーションを行う。
論文 参考訳(メタデータ) (2020-07-09T14:31:25Z) - Providing reliability in Recommender Systems through Bernoulli Matrix
Factorization [63.732639864601914]
本稿では,予測値と信頼性値の両方を提供するためにBernoulli Matrix Factorization (BeMF)を提案する。
BeMFはメモリベースのフィルタリングではなく、モデルベースの協調フィルタリングに作用する。
予測の信頼性が高ければ高いほど、それが間違っているという責任は少なくなる。
論文 参考訳(メタデータ) (2020-06-05T14:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。