Longitudinal Causal Image Synthesis
- URL: http://arxiv.org/abs/2410.17691v1
- Date: Wed, 23 Oct 2024 09:13:11 GMT
- Title: Longitudinal Causal Image Synthesis
- Authors: Yujia Li, Han Li, ans S. Kevin Zhou,
- Abstract summary: Clinical decision-making relies heavily on causal reasoning and longitudinal analysis.
How will the brain grey matter atrophy in a year if intervened on the A-beta level in cerebrospinal fluid?
- Score: 19.07839779249869
- License:
- Abstract: Clinical decision-making relies heavily on causal reasoning and longitudinal analysis. For example, for a patient with Alzheimer's disease (AD), how will the brain grey matter atrophy in a year if intervened on the A-beta level in cerebrospinal fluid? The answer is fundamental to diagnosis and follow-up treatment. However, this kind of inquiry involves counterfactual medical images which can not be acquired by instrumental or correlation-based image synthesis models. Yet, such queries require counterfactual medical images, not obtainable through standard image synthesis models. Hence, a causal longitudinal image synthesis (CLIS) method, enabling the synthesis of such images, is highly valuable. However, building a CLIS model confronts three primary yet unmet challenges: mismatched dimensionality between high-dimensional images and low-dimensional tabular variables, inconsistent collection intervals of follow-up data, and inadequate causal modeling capability of existing causal graph methods for image data. In this paper, we established a tabular-visual causal graph (TVCG) for CLIS overcoming these challenges through a novel integration of generative imaging, continuous-time modeling, and structural causal models combined with a neural network. We train our CLIS based on the ADNI dataset and evaluate it on two other AD datasets, which illustrate the outstanding yet controllable quality of the synthesized images and the contributions of synthesized MRI to the characterization of AD progression, substantiating the reliability and utility in clinics.
Related papers
- Synthesizing CTA Image Data for Type-B Aortic Dissection using Stable
Diffusion Models [0.993378200812519]
Stable Diffusion (SD) has gained a lot of attention in recent years in the field of Generative AI.
It has been shown that Cardiac CTA images can be successfully generated using Text to Image (T2I) stable diffusion model.
arXiv Detail & Related papers (2024-02-10T14:59:37Z) - A 3D generative model of pathological multi-modal MR images and
segmentations [3.4806591877889375]
We propose brainSPADE3D, a 3D generative model for brain MRI and associated segmentations.
The proposed joint imaging-segmentation generative model is shown to generate high-fidelity synthetic images and associated segmentations.
We demonstrate how the model can alleviate issues with segmentation model performance when unexpected pathologies are present in the data.
arXiv Detail & Related papers (2023-11-08T09:36:37Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
We propose an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices.
The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain.
Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models.
arXiv Detail & Related papers (2023-06-02T14:17:37Z) - Causal Image Synthesis of Brain MR in 3D [26.102886239053728]
We present a novel method for modeling the causality between demographic variables, clinical indices and brain MR images for Alzheimer's Diseases.
Specifically, we leverage a structural causal model to depict the causality and a styled generator to synthesize the image.
We experiment the proposed method based on 1586 subjects and 3683 3D images and synthesize counterfactual brain MR images.
arXiv Detail & Related papers (2023-03-25T03:56:32Z) - Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and
GANs [0.5039813366558306]
We propose a method for generating labeled data for the application of supervised deep-learning (DL) training.
The image synthesis consists of label deformation and label-to-image translation tasks.
We demonstrate that such an approach could provide a solution to diversify and enrich an available database of cardiac MR images.
arXiv Detail & Related papers (2022-09-09T10:17:49Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties.
The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research.
An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data.
arXiv Detail & Related papers (2022-02-14T19:29:08Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.