Fragile spin liquid in three dimensions
- URL: http://arxiv.org/abs/2410.17720v1
- Date: Wed, 23 Oct 2024 09:51:11 GMT
- Title: Fragile spin liquid in three dimensions
- Authors: Anna Fancelli, R. Flores-Calderón, Owen Benton, Bella Lake, Roderich Moessner, Johannes Reuther,
- Abstract summary: We study the ground state of the classical Heisenberg model on its linegraph, the trilline lattice.
We find that this network realises the recently proposed notion of a fragile spin liquid in three dimensions.
- Score: 0.0
- License:
- Abstract: Motivated by the recent appearance of the trillium lattice in the search for materials hosting spin liquids, we study the ground state of the classical Heisenberg model on its linegraph, the trilline lattice. We find that this network realises the recently proposed notion of a fragile spin liquid in three dimensions. Additionally, we analyze the Ising case and argue for a possible $\mathbb{Z}_2$ quantum spin liquid phase in the corresponding quantum dimer model. Like the well-known $U(1)$ spin liquids, the classical phase hosts moment fractionalisation evidenced in the diluted lattice, but unlike these, it exhibits exponential decay both in spin correlations and interactions between fractionalised moments. This provides the first instance of a purely short-range correlated classical Heisenberg spin liquid in three dimensions.
Related papers
- Hyperbolic Spin Liquids [0.0]
We extend Kitaev's spin honeycomb model to hyperbolic lattices and exploit their non-Euclidean space-group symmetries to solve the model exactly.
We elucidate the ground-state phase diagram on the $8,3$ lattice and find a gapped $mathbbZ$ spin liquid with Abelian anyons, a gapped chiral spin liquid with non-Abelian anyons and chiral edge states, and a compressible spin liquid with low-energy density of states dominated by non-Abelian Bloch states of Majorana fermions.
arXiv Detail & Related papers (2024-07-12T18:00:01Z) - Classification and emergence of quantum spin liquids in chiral Rydberg
models [0.0]
We investigate the nature of quantum phases arising in chiral interacting Hamiltonians recently realized in Rydberg atom arrays.
We classify all possible fermionic chiral spin liquids with $mathrmU(1)$ global symmetry using parton construction on the honeycomb lattice.
arXiv Detail & Related papers (2023-03-22T18:00:02Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Trimer quantum spin liquid in a honeycomb array of Rydberg atoms [0.0]
We show the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms.
In the regime where third-nearest-neighbor atoms lie within the Rydberg blockade, we find a novel ground state.
The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation.
arXiv Detail & Related papers (2022-11-01T18:00:00Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Measurable fractional spin for quantum Hall quasiparticles on the disk [0.0]
We study the spin of the localised quasiparticles of lowest-Landau-level quantum Hall states defined on a disk.
Since it is related to the quadrupole moment of the quasiparticle charge distribution, it can be measured in an experiment.
arXiv Detail & Related papers (2021-12-06T09:53:54Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.