YOLOv11: An Overview of the Key Architectural Enhancements
- URL: http://arxiv.org/abs/2410.17725v1
- Date: Wed, 23 Oct 2024 09:55:22 GMT
- Title: YOLOv11: An Overview of the Key Architectural Enhancements
- Authors: Rahima Khanam, Muhammad Hussain,
- Abstract summary: The paper explores YOLOv11's expanded capabilities across various computer vision tasks, including object detection, instance segmentation, pose estimation, and oriented object detection (OBB)
We review the model's performance improvements in terms of mean Average Precision (mAP) and computational efficiency compared to its predecessors, with a focus on the trade-off between parameter count and accuracy.
Our research provides insights into YOLOv11's position within the broader landscape of object detection and its potential impact on real-time computer vision applications.
- Score: 0.5639904484784127
- License:
- Abstract: This study presents an architectural analysis of YOLOv11, the latest iteration in the YOLO (You Only Look Once) series of object detection models. We examine the models architectural innovations, including the introduction of the C3k2 (Cross Stage Partial with kernel size 2) block, SPPF (Spatial Pyramid Pooling - Fast), and C2PSA (Convolutional block with Parallel Spatial Attention) components, which contribute in improving the models performance in several ways such as enhanced feature extraction. The paper explores YOLOv11's expanded capabilities across various computer vision tasks, including object detection, instance segmentation, pose estimation, and oriented object detection (OBB). We review the model's performance improvements in terms of mean Average Precision (mAP) and computational efficiency compared to its predecessors, with a focus on the trade-off between parameter count and accuracy. Additionally, the study discusses YOLOv11's versatility across different model sizes, from nano to extra-large, catering to diverse application needs from edge devices to high-performance computing environments. Our research provides insights into YOLOv11's position within the broader landscape of object detection and its potential impact on real-time computer vision applications.
Related papers
- What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study focuses on the YOLOv9 object detection model, focusing on its architectural innovations, training methodologies, and performance improvements.
Key advancements, such as the Generalized Efficient Layer Aggregation Network GELAN and Programmable Gradient Information PGI, significantly enhance feature extraction and gradient flow.
This paper provides the first in depth exploration of YOLOv9s internal features and their real world applicability, establishing it as a state of the art solution for real time object detection.
arXiv Detail & Related papers (2024-09-12T07:46:58Z) - What is YOLOv8: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study presents a detailed analysis of the YOLOv8 object detection model.
It focuses on its architecture, training techniques, and performance improvements over previous iterations like YOLOv5.
The paper reviews YOLOv8's performance across benchmarks like Microsoft COCO and Roboflow 100, highlighting its high accuracy and real-time capabilities.
arXiv Detail & Related papers (2024-08-28T15:18:46Z) - Spatial Transformer Network YOLO Model for Agricultural Object Detection [0.3124884279860061]
We propose a new method that integrates spatial transformer networks (STNs) into YOLO to improve performance.
The proposed STN-YOLO aims to enhance the model's effectiveness by focusing on important areas of the image.
We apply the STN-YOLO on benchmark datasets for Agricultural object detection as well as a new dataset from a state-of-the-art plant phenotyping greenhouse facility.
arXiv Detail & Related papers (2024-07-31T14:53:41Z) - What is YOLOv5: A deep look into the internal features of the popular object detector [0.5639904484784127]
The paper reviews the model's performance across various metrics and hardware platforms.
Overall, this research provides insights into YOLOv5's capabilities and its position within the broader landscape of object detection.
arXiv Detail & Related papers (2024-07-30T15:09:45Z) - YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision [0.6662800021628277]
This paper focuses on the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10.
We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions.
arXiv Detail & Related papers (2024-07-03T10:40:20Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
We build the first unified multi-modal 3D object detection benchmark MM- Omni3D and extend the aforementioned monocular detector to its multi-modal version.
We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively.
arXiv Detail & Related papers (2024-02-28T18:59:31Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.