論文の概要: MojoBench: Language Modeling and Benchmarks for Mojo
- arxiv url: http://arxiv.org/abs/2410.17736v1
- Date: Wed, 23 Oct 2024 10:11:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:19.743043
- Title: MojoBench: Language Modeling and Benchmarks for Mojo
- Title(参考訳): MojoBench: Mojoの言語モデリングとベンチマーク
- Authors: Nishat Raihan, Joanna C. S. Santos, Marcos Zampieri,
- Abstract要約: MojoBenchはMojoコード生成のための最初のフレームワークです。
Mojo-Coderは、GPT-4oやClaude-3.5-Sonnetのような主要なモデルよりも30~35%の性能向上を実現している。
- 参考スコア(独自算出の注目度): 7.909342163042154
- License:
- Abstract: The recently introduced Mojo programming language (PL) by Modular, has received significant attention in the scientific community due to its claimed significant speed boost over Python. Despite advancements in code Large Language Models (LLMs) across various PLs, Mojo remains unexplored in this context. To address this gap, we introduce MojoBench, the first framework for Mojo code generation. MojoBench includes HumanEval-Mojo, a benchmark dataset designed for evaluating code LLMs on Mojo, and Mojo-Coder, the first LLM pretrained and finetuned for Mojo code generation, which supports instructions in 5 natural languages (NLs). Our results show that Mojo-Coder achieves a 30-35% performance improvement over leading models like GPT-4o and Claude-3.5-Sonnet. Furthermore, we provide insights into LLM behavior with underrepresented and unseen PLs, offering potential strategies for enhancing model adaptability. MojoBench contributes to our understanding of LLM capabilities and limitations in emerging programming paradigms fostering more robust code generation systems.
- Abstract(参考訳): Modular が最近導入した Mojo プログラミング言語 (PL) は,Python に対する大幅な速度向上を主張する科学コミュニティの注目を集めている。
コード LLM(Large Language Models)は様々なPLにまたがっているが、Mojoはこの文脈では探索されていない。
このギャップを解決するために、Mojoコード生成のための最初のフレームワークであるMojoBenchを紹介します。
MojoBenchには、Mojo上でLLMを評価するために設計されたベンチマークデータセットであるHumanEval-Mojoと、5つの自然言語(NL)で命令をサポートするMojoコード生成用に事前訓練および微調整された最初のLLMであるMojo-Coderが含まれている。
その結果,Mojo-CoderはGPT-4oやClaude-3.5-Sonnetといった先行モデルよりも30~35%の性能向上を実現していることがわかった。
さらに,LLMの動作に対する洞察を,表現不足や見えないPLを用いて提供し,モデル適応性を高めるための潜在的戦略を提供する。
MojoBenchは、より堅牢なコード生成システムを促進する新しいプログラミングパラダイムにおけるLLM機能と制限の理解に貢献します。
関連論文リスト
- CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
我々は,LLMの性能を高めるため,グラフィカル検索拡張コード生成フレームワークであるCodeGRAGを提案する。
CodeGRAGは、制御フローとデータフローに基づいて、コードブロックのグラフィカルなビューを構築し、プログラミング言語と自然言語のギャップを埋める。
ハードメタグラフプロンプト、ソフトプロンプト技術、事前訓練されたGNN専門家の目的の有効性を検証するために、C++言語とピソン言語の両方を含む4つのデータセットで様々な実験と改善が行われた。
論文 参考訳(メタデータ) (2024-05-03T02:48:55Z) - CodeEditorBench: Evaluating Code Editing Capability of Large Language Models [49.387195629660994]
コードのための大規模言語モデル(LLM)は急速に進化しており、コード編集が重要な機能として現れている。
コード編集タスクにおけるLLMの性能を厳格に評価するための評価フレームワークであるCodeEditorBenchを紹介する。
5つのソースからさまざまなコーディング課題やシナリオをキュレートし、さまざまなプログラミング言語、複雑性レベル、編集タスクをカバーしています。
論文 参考訳(メタデータ) (2024-04-04T15:49:49Z) - Improving Natural Language Capability of Code Large Language Model [13.639938216171185]
本稿では,AttentionExtractorとAttentionCoderという2つのモジュールからなる新しいフレームワークを提案する。
AttentionExtractorはユーザの自然言語要求からキーフレーズを抽出する役割を持ち、AttentionCoderは抽出したフレーズを利用してターゲットコードを生成する。
フレームワークの有効性を検証するため、5つの自然言語をカバーするMultiNL-Hという新しいコード生成ベンチマークを構築した。
論文 参考訳(メタデータ) (2024-01-25T15:33:20Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - MoTCoder: Elevating Large Language Models with Modular of Thought for Challenging Programming Tasks [50.61968901704187]
本稿では,タスクの論理的サブタスクとサブモジュールへの分解を促進するため,MoT命令チューニングの先駆的フレームワークを提案する。
調査の結果,MoTCoderはサブモジュールの栽培と利用を通じて,生成したソリューションのモジュラリティと正しさの両方を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-26T08:49:57Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
我々は,自己修正の連鎖を通じてモジュール化されたコード生成を誘発する,新しい推論フレームワークであるCodeChainを提案する。
CodeChainは、生成したソリューションのモジュール性と正確性の両方を大幅に向上させ、APPSで35%、CodeContestsで76%の相対パス@1の改善を実現しています。
論文 参考訳(メタデータ) (2023-10-13T10:17:48Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。