Escaping the Forest: Sparse Interpretable Neural Networks for Tabular Data
- URL: http://arxiv.org/abs/2410.17758v1
- Date: Wed, 23 Oct 2024 10:50:07 GMT
- Title: Escaping the Forest: Sparse Interpretable Neural Networks for Tabular Data
- Authors: Salvatore Raieli, Abdulrahman Altahhan, Nathalie Jeanray, Stéphane Gerart, Sebastien Vachenc,
- Abstract summary: We show that our models, Sparse TABular NET or sTAB-Net with attention mechanisms, are more effective than tree-based models.
They achieve better performance than post-hoc methods like SHAP.
- Score: 0.0
- License:
- Abstract: Tabular datasets are widely used in scientific disciplines such as biology. While these disciplines have already adopted AI methods to enhance their findings and analysis, they mainly use tree-based methods due to their interpretability. At the same time, artificial neural networks have been shown to offer superior flexibility and depth for rich and complex non-tabular problems, but they are falling behind tree-based models for tabular data in terms of performance and interpretability. Although sparsity has been shown to improve the interpretability and performance of ANN models for complex non-tabular datasets, enforcing sparsity structurally and formatively for tabular data before training the model, remains an open question. To address this question, we establish a method that infuses sparsity in neural networks by utilising attention mechanisms to capture the features' importance in tabular datasets. We show that our models, Sparse TABular NET or sTAB-Net with attention mechanisms, are more effective than tree-based models, reaching the state-of-the-art on biological datasets. They further permit the extraction of insights from these datasets and achieve better performance than post-hoc methods like SHAP.
Related papers
- A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - Tabular Data: Is Attention All You Need? [23.787352248749382]
We introduce a large-scale empirical study comparing neural networks against gradient-boosted decision trees on structured data.
In contrast to prior work, our empirical findings indicate that neural networks are competitive against decision trees.
arXiv Detail & Related papers (2024-02-06T12:59:02Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Why do tree-based models still outperform deep learning on tabular data? [0.0]
We show that tree-based models remain state-of-the-art on medium-sized data.
We conduct an empirical investigation into the differing inductive biases of tree-based models and Neural Networks (NNs)
arXiv Detail & Related papers (2022-07-18T08:36:08Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - XBNet : An Extremely Boosted Neural Network [0.0]
XBNet tries to combine tree-based models with that of neural networks to create a robust architecture trained by using a novel optimization technique, Boosted Gradient Descent for Tabular Data.
In this paper, we describe a novel architecture XBNet, which tries to combine tree-based models with that of neural networks to create a robust architecture trained by using a novel optimization technique, Boosted Gradient Descent for Tabular Data.
arXiv Detail & Related papers (2021-06-09T17:31:50Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.