A Survey on Deep Tabular Learning
- URL: http://arxiv.org/abs/2410.12034v1
- Date: Tue, 15 Oct 2024 20:08:08 GMT
- Title: A Survey on Deep Tabular Learning
- Authors: Shriyank Somvanshi, Subasish Das, Syed Aaqib Javed, Gian Antariksa, Ahmed Hossain,
- Abstract summary: Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
- Score: 0.0
- License:
- Abstract: Tabular data, widely used in industries like healthcare, finance, and transportation, presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure. This survey reviews the evolution of deep learning models for tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet. These models incorporate attention mechanisms, feature embeddings, and hybrid architectures to address tabular data complexities. TabNet uses sequential attention for instance-wise feature selection, improving interpretability, while SAINT combines self-attention and intersample attention to capture complex interactions across features and data points, both advancing scalability and reducing computational overhead. Hybrid architectures such as TabTransformer and FT-Transformer integrate attention mechanisms with multi-layer perceptrons (MLPs) to handle categorical and numerical data, with FT-Transformer adapting transformers for tabular datasets. Research continues to balance performance and efficiency for large datasets. Graph-based models like GNN4TDL and GANDALF combine neural networks with decision trees or graph structures, enhancing feature representation and mitigating overfitting in small datasets through advanced regularization techniques. Diffusion-based models like the Tabular Denoising Diffusion Probabilistic Model (TabDDPM) generate synthetic data to address data scarcity, improving model robustness. Similarly, models like TabPFN and Ptab leverage pre-trained language models, incorporating transfer learning and self-supervised techniques into tabular tasks. This survey highlights key advancements and outlines future research directions on scalability, generalization, and interpretability in diverse tabular data applications.
Related papers
- TabDiff: a Multi-Modal Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all multi-modal distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Escaping the Forest: Sparse Interpretable Neural Networks for Tabular Data [0.0]
We show that our models, Sparse TABular NET or sTAB-Net with attention mechanisms, are more effective than tree-based models.
They achieve better performance than post-hoc methods like SHAP.
arXiv Detail & Related papers (2024-10-23T10:50:07Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - InterpreTabNet: Distilling Predictive Signals from Tabular Data by Salient Feature Interpretation [7.67293014317639]
We propose a variant of the TabNet model that models the attention mechanism as a latent variable sampled from a Gumbel-Softmax distribution.
This enables us to regularize the model to learn distinct concepts in the attention masks via a KL Divergence regularizer.
It prevents overlapping feature selection by promoting sparsity which maximizes the model's efficacy and improves interpretability.
arXiv Detail & Related papers (2024-06-01T12:48:11Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - Deep Learning with Tabular Data: A Self-supervised Approach [0.0]
We have used a self-supervised learning approach in this study.
The aim is to find the most effective TabTransformer model representation of categorical and numerical features.
The research has presented with a novel approach by creating various variants of TabTransformer model.
arXiv Detail & Related papers (2024-01-26T23:12:41Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - Training-Free Generalization on Heterogeneous Tabular Data via
Meta-Representation [67.30538142519067]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
A deep neural network is then trained to associate these meta-representations with dataset-specific classification confidences.
Experiments validate that TabPTM achieves promising performance in new datasets, even under few-shot scenarios.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Generating tabular datasets under differential privacy [0.0]
We introduce Differential Privacy (DP) into the training process of deep neural networks.
This creates a trade-off between the quality and privacy of the resulting data.
We implement novel end-to-end models that leverage attention mechanisms.
arXiv Detail & Related papers (2023-08-28T16:35:43Z) - Transfer Learning with Deep Tabular Models [66.67017691983182]
We show that upstream data gives tabular neural networks a decisive advantage over GBDT models.
We propose a realistic medical diagnosis benchmark for tabular transfer learning.
We propose a pseudo-feature method for cases where the upstream and downstream feature sets differ.
arXiv Detail & Related papers (2022-06-30T14:24:32Z) - ARM-Net: Adaptive Relation Modeling Network for Structured Data [29.94433633729326]
ARM-Net is an adaptive relation modeling network tailored for structured data and a lightweight framework ARMOR based on ARM-Net for relational data.
We show that ARM-Net consistently outperforms existing models and provides more interpretable predictions for datasets.
arXiv Detail & Related papers (2021-07-05T07:37:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.