Evaluating Explanations Through LLMs: Beyond Traditional User Studies
- URL: http://arxiv.org/abs/2410.17781v1
- Date: Wed, 23 Oct 2024 11:31:52 GMT
- Title: Evaluating Explanations Through LLMs: Beyond Traditional User Studies
- Authors: Francesco Bombassei De Bona, Gabriele Dominici, Tim Miller, Marc Langheinrich, Martin Gjoreski,
- Abstract summary: We reproduce a user study comparing counterfactual and causal explanations, replicating human participants with seven Large Language Models (LLMs)
Our results show that (i) LLMs can replicate most conclusions from the original study, (ii) different LLMs yield varying levels of alignment in the results, and (iii) experimental factors such as LLM memory and output variability affect alignment with human responses.
- Score: 7.377398767507683
- License:
- Abstract: As AI becomes fundamental in sectors like healthcare, explainable AI (XAI) tools are essential for trust and transparency. However, traditional user studies used to evaluate these tools are often costly, time consuming, and difficult to scale. In this paper, we explore the use of Large Language Models (LLMs) to replicate human participants to help streamline XAI evaluation. We reproduce a user study comparing counterfactual and causal explanations, replicating human participants with seven LLMs under various settings. Our results show that (i) LLMs can replicate most conclusions from the original study, (ii) different LLMs yield varying levels of alignment in the results, and (iii) experimental factors such as LLM memory and output variability affect alignment with human responses. These initial findings suggest that LLMs could provide a scalable and cost-effective way to simplify qualitative XAI evaluation.
Related papers
- Enhancing LLM Evaluations: The Garbling Trick [0.0]
Large language models (LLMs) become increasingly powerful, making it challenging to distinguish between models based on their performance.
We propose a general method to transform existing LLM evaluations into a series of progressively more difficult tasks.
Our results offer insights into the comparative reasoning abilities of these models, particularly highlighting distinctions between OpenAI's o1-preview and Google's gemini-pro-1.5.
arXiv Detail & Related papers (2024-11-03T11:39:50Z) - The LLM Effect: Are Humans Truly Using LLMs, or Are They Being Influenced By Them Instead? [60.01746782465275]
Large Language Models (LLMs) have shown capabilities close to human performance in various analytical tasks.
This paper investigates the efficiency and accuracy of LLMs in specialized tasks through a structured user study focusing on Human-LLM partnership.
arXiv Detail & Related papers (2024-10-07T02:30:18Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
We show that Large Language Models (LLMs) are biased evaluators as they exhibit familiarity bias and show skewed distributions of ratings.
We also found that LLMs are inconsistent evaluators, showing low "inter-sample" agreement and sensitivity to prompt differences that are insignificant to human understanding of text quality.
arXiv Detail & Related papers (2024-05-02T20:42:28Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.