論文の概要: Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection
- arxiv url: http://arxiv.org/abs/2410.17792v1
- Date: Wed, 23 Oct 2024 11:47:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:20.769386
- Title: Enhancing Federated Learning Convergence with Dynamic Data Queue and Data Entropy-driven Participant Selection
- Title(参考訳): 動的データキューとデータエントロピー駆動参加者選択によるフェデレーション学習の収束性向上
- Authors: Charuka Herath, Xiaolan Liu, Sangarapillai Lambotharan, Yogachandran Rahulamathavan,
- Abstract要約: Federated Learning(FL)は、エッジデバイス上でのコラボレーティブモデルトレーニングのための分散アプローチである。
本稿では,サーバ上のデータのグローバルサブセットを作成し,デバイス間で動的に分散することにより,FLの収束を改善する手法を提案する。
提案手法により,MNISTデータセットでは約5%,CIFAR-10では約18%,CIFAR-100では約20%の精度向上を実現した。
- 参考スコア(独自算出の注目度): 13.825031686864559
- License:
- Abstract: Federated Learning (FL) is a decentralized approach for collaborative model training on edge devices. This distributed method of model training offers advantages in privacy, security, regulatory compliance, and cost-efficiency. Our emphasis in this research lies in addressing statistical complexity in FL, especially when the data stored locally across devices is not identically and independently distributed (non-IID). We have observed an accuracy reduction of up to approximately 10\% to 30\%, particularly in skewed scenarios where each edge device trains with only 1 class of data. This reduction is attributed to weight divergence, quantified using the Euclidean distance between device-level class distributions and the population distribution, resulting in a bias term (\(\delta_k\)). As a solution, we present a method to improve convergence in FL by creating a global subset of data on the server and dynamically distributing it across devices using a Dynamic Data queue-driven Federated Learning (DDFL). Next, we leverage Data Entropy metrics to observe the process during each training round and enable reasonable device selection for aggregation. Furthermore, we provide a convergence analysis of our proposed DDFL to justify their viability in practical FL scenarios, aiming for better device selection, a non-sub-optimal global model, and faster convergence. We observe that our approach results in a substantial accuracy boost of approximately 5\% for the MNIST dataset, around 18\% for CIFAR-10, and 20\% for CIFAR-100 with a 10\% global subset of data, outperforming the state-of-the-art (SOTA) aggregation algorithms.
- Abstract(参考訳): Federated Learning(FL)は、エッジデバイス上でのコラボレーティブモデルトレーニングのための分散アプローチである。
この分散モデルトレーニングの方法は、プライバシ、セキュリティ、規制コンプライアンス、費用対効果の利点を提供する。
特に、デバイス間でローカルに保存されたデータが同一で独立に分散されていない場合(非IID)。
特に,各エッジデバイスが1種類のデータしか扱わない,歪んだシナリオでは,最大10\%から30\%の精度低下が観測されている。
この減少は、デバイスレベルのクラス分布と人口分布の間のユークリッド距離を用いて定量化され、バイアス項(\(\delta_k\))となる。
そこで本研究では,サーバ上のデータのグローバルサブセットを作成し,動的データキュー駆動型フェデレート学習(DDFL)を用いてデバイス間で動的に分散することにより,FLの収束を改善する手法を提案する。
次に、データエントロピーのメトリクスを活用して、トレーニングラウンド毎にプロセスを観察し、アグリゲーションのための適切なデバイス選択を可能にします。
さらに,提案したDDFLの収束解析により,より優れたデバイス選択,非最適グローバルモデル,より高速な収束を目指して,実用的FLシナリオにおけるそれらの生存性を正当化する。
CIFAR-10では約18%,CIFAR-100では10倍の精度で精度が向上し,SOTA(State-of-the-art)アグリゲーションアルゴリズムよりも優れていた。
関連論文リスト
- FedEP: Tailoring Attention to Heterogeneous Data Distribution with Entropy Pooling for Decentralized Federated Learning [8.576433180938004]
本稿では,新しいDFL集約アルゴリズムFederated Entropy Pooling (FedEP)を提案する。
FedEPは、実際のデータではなく、局所分布の統計特性を取り入れることで、クライアントのドリフト問題を緩和する。
実験により、FedEPは最先端のアプローチよりも早く収束し、高いテスト性能を示すことが示されている。
論文 参考訳(メタデータ) (2024-10-10T07:39:15Z) - Efficient Data Distribution Estimation for Accelerated Federated Learning [5.085889377571319]
Federated Learning(FL)は、多数の分散エッジデバイスでグローバルモデルをその場でトレーニングする、プライバシ保護機械学習パラダイムである。
デバイスはシステムリソースとトレーニングデータの両方において非常に異質である。
様々なクライアント選択アルゴリズムが開発され、モデルカバレッジと精度の点で有望な性能向上を示している。
論文 参考訳(メタデータ) (2024-06-03T20:33:17Z) - Decoupled Federated Learning on Long-Tailed and Non-IID data with
Feature Statistics [20.781607752797445]
特徴統計量(DFL-FS)を用いた2段階分離型フェデレーション学習フレームワークを提案する。
最初の段階では、サーバは、マスキングされたローカル特徴統計クラスタリングによってクライアントのクラスカバレッジ分布を推定する。
第2段階では、DFL-FSは、グローバルな特徴統計に基づくフェデレーションされた特徴再生を使用して、長い尾を持つデータ分布へのモデルの適応性を高める。
論文 参考訳(メタデータ) (2024-03-13T09:24:59Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
異なるエッジデバイス(クライアント)にまたがるローカルデータの不均一な分散は、フェデレート学習における遅いモデルトレーニングと精度の低下をもたらす。
この研究は、実世界のデータセット、すなわちクラスタスキューで発生する新しい非IID型を導入している。
我々は,各クライアントのインパクト要因を適応的に決定するために,深層強化学習を用いた新しいFLモデルであるFedDRLを提案する。
論文 参考訳(メタデータ) (2022-08-04T04:24:16Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Federated Visual Classification with Real-World Data Distribution [9.564468846277366]
我々は,FedAvg(Federated Averaging)アルゴリズムのベンチマークを用いて,実世界のデータ分布が分散学習に与える影響を特徴付ける。
種別とランドマーク分類のための2つの新しい大規模データセットを導入し,ユーザ毎のデータ分割を現実的に行う。
また、2つの新しいアルゴリズム(FedVC、FedIR)も開発しています。
論文 参考訳(メタデータ) (2020-03-18T07:55:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。