regAL: Python Package for Active Learning of Regression Problems
- URL: http://arxiv.org/abs/2410.17917v1
- Date: Wed, 23 Oct 2024 14:34:36 GMT
- Title: regAL: Python Package for Active Learning of Regression Problems
- Authors: Elizaveta Surzhikova, Jonny Proppe,
- Abstract summary: Python package regAL allows users to evaluate different active learning strategies for regression problems.
We present our Python package regAL, which allows users to evaluate different active learning strategies for regression problems.
- Score: 0.0
- License:
- Abstract: Increasingly more research areas rely on machine learning methods to accelerate discovery while saving resources. Machine learning models, however, usually require large datasets of experimental or computational results, which in certain fields, such as (bio)chemistry, materials science, or medicine, are rarely given and often prohibitively expensive to obtain. To bypass that obstacle, active learning methods are employed to develop machine learning models with a desired performance while requiring the least possible number of computational or experimental results from the domain of application. For this purpose, the model's knowledge about certain regions of the application domain is estimated to guide the choice of the model's training set. Although active learning is widely studied for classification problems (discrete outcomes), comparatively few works handle this method for regression problems (continuous outcomes). In this work, we present our Python package regAL, which allows users to evaluate different active learning strategies for regression problems. With a minimal input of just the dataset in question, but many additional customization and insight options, this package is intended for anyone who aims to perform and understand active learning in their problem-specific scope.
Related papers
- Active learning for regression in engineering populations: A risk-informed approach [0.0]
Regression is a fundamental prediction task common in data-centric engineering applications.
Active learning is an approach for preferentially acquiring feature-label pairs in a resource-efficient manner.
It is shown that the proposed approach has superior performance in terms of expected cost -- maintaining predictive performance while reducing the number of inspections required.
arXiv Detail & Related papers (2024-09-06T15:03:42Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
Supervised machine learning relies on the availability of good labelled data for model training.
Active learning is a sub-field of machine learning which helps in obtaining the labelled data efficiently.
arXiv Detail & Related papers (2023-10-30T14:29:53Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
arXiv Detail & Related papers (2022-12-09T14:17:45Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.