論文の概要: Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
- arxiv url: http://arxiv.org/abs/2410.17933v1
- Date: Wed, 23 Oct 2024 14:55:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:57:20.066324
- Title: Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
- Title(参考訳): Blockchain-Enabled Federated Learning を用いた多大陸医療モデルの構築
- Authors: Rui Sun, Zhipeng Wang, Hengrui Zhang, Ming Jiang, Yizhe Wen, Jiqun Zhang, Jiahao Sun, Shuoying Zhang, Erwu Liu, Kezhi Li,
- Abstract要約: 我々は,地域データセットを共有することなく,多大陸(ヨーロッパ,北米,アジア)のデータセットを用いたグローバルヘルスケアモデリングの枠組みを提案する。
技術的には、ブロックチェーン対応のフェデレーション学習は、医療データのプライバシと安全性の要件を満たすように適応して実装されている。
実験結果から,提案するフレームワークは有効で,効率的で,プライバシーが保たれていることが明らかとなった。
- 参考スコア(独自算出の注目度): 14.570622203933553
- License:
- Abstract: One of the biggest challenges of building artificial intelligence (AI) model in healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausted, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America and Asia) while without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaption to make it meet with the privacy and safety requirements of healthcare data, meanwhile rewards honest participation and penalize malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy preserved. Its prediction accuracy is much better than the models trained from limited personal data and is similar to, and even slightly better than, the results from a centralized dataset. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.
- Abstract(参考訳): 医療分野で人工知能(AI)モデルを構築する上での最大の課題の1つは、データ共有である。
医療データは、プライベートで、センシティブで、異種であるため、モデリングに十分なデータを収集することは、枯渇し、コストがかかり、時には不可能である。
本稿では,地域データセットを共有することなく,多大陸(ヨーロッパ,北アメリカ,アジア)のデータセットを用いたグローバルヘルスケアモデリングの枠組みを提案し,その有効性を検証するための研究モデルとしてグルコース管理を選択する。
技術的には、ブロックチェーン対応のフェデレーション学習は、医療データのプライバシと安全要件を満たすために適応して実施される。
実験結果から,提案するフレームワークは有効で,効率的で,プライバシーが保たれていることが明らかとなった。
その予測精度は、限られた個人データからトレーニングされたモデルよりもはるかに優れており、集中したデータセットの結果と似ている。
この研究は、偏見を減らし、人類に利益をもたらすために、追加のデータが不可欠である医療プロジェクトにおける国際協力の道を開く。
関連論文リスト
- Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Towards Blockchain-Assisted Privacy-Aware Data Sharing For Edge
Intelligence: A Smart Healthcare Perspective [19.208368632576153]
リンク攻撃はプライバシードメインにおける支配的な攻撃の一種である。
敵は 健康データを偽装するために 毒殺攻撃を仕掛ける 誤診や 身体的損傷までも 引き起こす
個人の健康データを保護するために,ユーザ間の信頼度に基づく個人差分プライバシモデルを提案する。
論文 参考訳(メタデータ) (2023-06-29T02:06:04Z) - Medical Federated Model with Mixture of Personalized and Sharing
Components [31.068735334318088]
本稿では,その問題に対処するための新しい個人化学習フレームワークを提案する。
ローカルデータ間の類似性を認識したパーソナライズされたモデルが得られる。
また,計算効率を大幅に向上させる効率的な計算コスト削減手法を提案する。
論文 参考訳(メタデータ) (2023-06-26T07:50:32Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Patchwork Learning: A Paradigm Towards Integrative Analysis across
Diverse Biomedical Data Sources [40.32772510980854]
パッチワーク学習(PL)とは、異なるデータモダリティからなる異なるデータセットからの情報を統合するパラダイムである。
PLはデータのプライバシを保持しながら、補完的なデータソースの同時利用を可能にする。
本稿では、パッチワーク学習の概念とその医療における実装について紹介し、潜在的な機会と適用可能なデータソースを探求する。
論文 参考訳(メタデータ) (2023-05-10T14:50:33Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
我々は,フェデレートラーニングの文脈において,プライバシを提供するための最初の構文的アプローチを提案する。
当社のアプローチは,プライバシの保護レベルをサポートしながら,実用性やモデルの性能を最大化することを目的としている。
医療領域における2つの重要な課題について,100万人の患者の実世界電子健康データを用いて包括的実証評価を行った。
論文 参考訳(メタデータ) (2020-02-21T02:30:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。