Optimizing Travel Itineraries with AI Algorithms in a Microservices Architecture: Balancing Cost, Time, Preferences, and Sustainability
- URL: http://arxiv.org/abs/2410.17943v1
- Date: Wed, 23 Oct 2024 15:15:56 GMT
- Title: Optimizing Travel Itineraries with AI Algorithms in a Microservices Architecture: Balancing Cost, Time, Preferences, and Sustainability
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract summary: The objective of this research is how an implementation of AI algorithms in the architecture enhances travel itineraries by cost, time, user preferences, and environmental sustainability.
It uses machine learning models for both cost forecasting and personalization, genetic algorithm for optimization of the itinerary, and iterations for sustainability checking.
The experimental results demonstrate an average of 4.5 seconds of response time on 1000 concurrent users and 92% of user preferences accuracy.
- Score: 1.03590082373586
- License:
- Abstract: The objective of this research is how an implementation of AI algorithms in the microservices architecture enhances travel itineraries by cost, time, user preferences, and environmental sustainability. It uses machine learning models for both cost forecasting and personalization, genetic algorithm for optimization of the itinerary, and heuristics for sustainability checking. Primary evaluated parameters consist of latency, ability to satisfy user preferences, cost and environmental concern. The experimental results demonstrate an average of 4.5 seconds of response time on 1000 concurrent users and 92% of user preferences accuracy. The cost efficiency is proved, with 95% of provided trips being within the limits of the budget declared by the user. The system also implements some measures to alleviate negative externalities related to travel and 60% of offered travel plans had green options incorporated, resulting in the average 15% lower carbon emissions than the traditional travel plans offered. The genetic algorithm with time complexity O(g.p.f) provides the optimal solution in 100 generations. Every iteration improves the quality of the solution by 5%, thus enabling its effective use in optimization problems where time is measured in seconds. Finally, the system is designed to be fault-tolerant with functional 99.9% availability which allows the provision of services even when requirements are exceeded. Travel optimization platform is turned dynamic and efficient by this microservices based architecture which provides enhanced scaling, allows asynchronous communication and real time changes. Because of the incorporation of Ai, cost control and eco-friendliness approaches, the system addresses the different user needs in the present days travel business.
Related papers
- Real-Time Performance Optimization of Travel Reservation Systems Using AI and Microservices [1.03590082373586]
This study proposes a hybrid framework that folds an Artificial Intelligence and a Microservices approach for the performance optimization of the system.
The AI algorithms forecast demand patterns, optimize the allocation of resources, and enhance decision-making driven by Microservices architecture.
arXiv Detail & Related papers (2024-12-09T16:08:22Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Optimal Design and Implementation of an Open-source Emulation Platform for User-Centric Shared E-mobility Services [3.143086603502139]
Existing shared E-mobility services exhibit critical design deficiencies.
There is no consolidated open-source platform which could benefit the E-mobility research community.
This paper aims to bridge this gap by providing an open-source platform for shared E-mobility.
arXiv Detail & Related papers (2024-03-12T11:51:30Z) - Towards General and Efficient Online Tuning for Spark [55.30868031221838]
We present a general and efficient Spark tuning framework that can deal with the three issues simultaneously.
We have implemented this framework as an independent cloud service, and applied it to the data platform in Tencent.
arXiv Detail & Related papers (2023-09-05T02:16:45Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information.
In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters)
Standard algorithms assume no cost for switching their decisions at every round, but in many practical applications, there is a cost associated with such changes, which should be minimized.
arXiv Detail & Related papers (2022-10-14T20:19:32Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
This paper proposes an onboard scheduler, that integrates inside an onboard software framework for mission autonomy.
The scheduler is based on linear integer programming and relies on the use of a branch-and-cut solver.
The technology has been tested on an Earth Observation scenario, comparing its performance against the state-of-the-art scheduling technology.
arXiv Detail & Related papers (2022-05-04T12:00:49Z) - Online Learning for Traffic Routing under Unknown Preferences [30.83342068243601]
We propose an online learning approach to set tolls in a traffic network to drive heterogeneous users with different values of time toward a system-efficient traffic pattern.
In particular, we develop a simple yet effective algorithm that adjusts tolls at each time period solely based on the observed aggregate flows on the roads of the network.
arXiv Detail & Related papers (2022-03-31T16:21:29Z) - Route Optimization via Environment-Aware Deep Network and Reinforcement
Learning [7.063811319445716]
We develop a mobile sequential recommendation system to maximize the profitability of vehicle service providers (e.g., taxi drivers)
A reinforcement-learning framework is proposed to tackle this problem, by integrating a self-check mechanism and a deep neural network for customer pick-up point monitoring.
Based on the yellow taxi data in New York City and vicinity before and after the COVID-19 outbreak, we have conducted comprehensive experiments to evaluate the effectiveness of our method.
arXiv Detail & Related papers (2021-11-16T02:19:13Z) - Learning Model Predictive Controllers for Real-Time Ride-Hailing Vehicle
Relocation and Pricing Decisions [15.80796896560034]
Large-scale ride-hailing systems often combine real-time routing at the individual request level with a macroscopic Model Predictive Control (MPC) optimization for dynamic pricing and vehicle relocation.
This paper addresses these computational challenges by learning the MPC optimization.
The resulting machine-learning model then serves as the optimization proxy and predicts its optimal solutions.
arXiv Detail & Related papers (2021-11-05T00:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.