Optimal Design and Implementation of an Open-source Emulation Platform for User-Centric Shared E-mobility Services
- URL: http://arxiv.org/abs/2403.07964v2
- Date: Mon, 1 Jul 2024 18:46:52 GMT
- Title: Optimal Design and Implementation of an Open-source Emulation Platform for User-Centric Shared E-mobility Services
- Authors: Maqsood Hussain Shah, Yue Ding, Shaoshu Zhu, Yingqi Gu, Mingming Liu,
- Abstract summary: Existing shared E-mobility services exhibit critical design deficiencies.
There is no consolidated open-source platform which could benefit the E-mobility research community.
This paper aims to bridge this gap by providing an open-source platform for shared E-mobility.
- Score: 3.143086603502139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rising concern over transportation emissions and pollution on a global scale, shared electric mobility services like E-cars, E-bikes, and E-scooters have emerged as promising solutions to mitigate these pressing challenges. However, existing shared E-mobility services exhibit critical design deficiencies, including insufficient service integration, imprecise energy consumption forecasting, limited scalability and geographical coverage, and a notable absence of a user-centric perspective, particularly in the context of multi-modal transportation. More importantly, there is no consolidated open-source platform which could benefit the E-mobility research community. This paper aims to bridge this gap by providing an open-source platform for shared E-mobility. The proposed platform, with an agent-in-the-loop approach and modular architecture, is tailored to diverse user preferences and offers enhanced customization. We demonstrate the viability of this platform by providing a comprehensive analysis for integrated multi-modal route-optimization in diverse scenarios of energy availability, user preferences and E-mobility tools placement for which we use modified Ant Colony Optimization algorithm so called Multi-Model Energy Constrained ACO (MMEC-ACO) and Q-Learning algorithms. Our findings demonstrate that Q-learning achieves significantly better performance in terms of travel time cost for more than 90\% of the instances as compared to MMEC-ACO for different scenarios including energy availability, user preference and E-mobility tools distribution. For a fixed (O, D) pair, the average execution time to achieve optimal time cost solution for MMEC-ACO is less than 2 seconds, while Q-learning reaches an optimal time cost in 20 seconds on average. For a run-time of 2 seconds, Q-learning still achieves a better optimal time cost with a 20\% reduction over MMEC-ACO's time cost.
Related papers
- Advancing Generative Artificial Intelligence and Large Language Models for Demand Side Management with Internet of Electric Vehicles [52.43886862287498]
This paper explores the integration of large language models (LLMs) into energy management.
We propose an innovative solution that enhances LLMs with retrieval-augmented generation for automatic problem formulation, code generation, and customizing optimization.
We present a case study to demonstrate the effectiveness of our proposed solution in charging scheduling and optimization for electric vehicles.
arXiv Detail & Related papers (2025-01-26T14:31:03Z) - Optimizing Travel Itineraries with AI Algorithms in a Microservices Architecture: Balancing Cost, Time, Preferences, and Sustainability [1.03590082373586]
The objective of this research is how an implementation of AI algorithms in the architecture enhances travel itineraries by cost, time, user preferences, and environmental sustainability.
It uses machine learning models for both cost forecasting and personalization, genetic algorithm for optimization of the itinerary, and iterations for sustainability checking.
The experimental results demonstrate an average of 4.5 seconds of response time on 1000 concurrent users and 92% of user preferences accuracy.
arXiv Detail & Related papers (2024-10-23T15:15:56Z) - A Green Multi-Attribute Client Selection for Over-The-Air Federated Learning: A Grey-Wolf-Optimizer Approach [5.277822313069301]
Over-the-air (OTA) FL was introduced to tackle these challenges by disseminating model updates without direct device-to-device connections or centralized servers.
OTA-FL brought forth limitations associated with heightened energy consumption and network latency.
We propose a multi-attribute client selection framework employing the grey wolf (GWO) to strategically control the number of participants in each round.
arXiv Detail & Related papers (2024-09-16T20:03:57Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Edge computing service deployment and task offloading based on
multi-task high-dimensional multi-objective optimization [5.64850919046892]
This study investigates service deployment and task offloading challenges in a multi-user environment.
To ensure stable service provisioning, beyond considering latency, energy consumption, and cost, network reliability is also incorporated.
To promote equitable usage of edge servers, load balancing is introduced as a fourth task offloading objective.
arXiv Detail & Related papers (2023-12-07T07:30:47Z) - Real-time Control of Electric Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning [14.073588678179865]
Electric Autonomous Mobility-on-Demand (E-AMoD) fleets need to make several real-time decisions.
We present the E-AMoD control problem through the lens of reinforcement learning.
We propose a graph network-based framework to achieve drastically improved scalability and superior performance overoptimals.
arXiv Detail & Related papers (2023-11-09T22:57:21Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - End-to-End Feasible Optimization Proxies for Large-Scale Economic
Dispatch [19.35194281700331]
The paper proposes a novel End-to-End Learning and Repair architecture for training optimization proxies for economic dispatch problems.
E2ELR combines deep neural networks with closed-form, differentiable repair layers, thereby integrating learning and feasibility in an end-to-end fashion.
E2ELR is evaluated on industry-size power grids with tens of thousands of buses using an economic dispatch that co-optimizes energy and reserves.
arXiv Detail & Related papers (2023-04-23T19:00:17Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.