論文の概要: Benchmarking Floworks against OpenAI & Anthropic: A Novel Framework for Enhanced LLM Function Calling
- arxiv url: http://arxiv.org/abs/2410.17950v1
- Date: Wed, 23 Oct 2024 15:23:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:56:02.098089
- Title: Benchmarking Floworks against OpenAI & Anthropic: A Novel Framework for Enhanced LLM Function Calling
- Title(参考訳): OpenAI と Anthropic に対する Benchmarking Floworks: 拡張 LLM 関数呼び出しのための新しいフレームワーク
- Authors: Nirav Bhan, Shival Gupta, Sai Manaswini, Ritik Baba, Narun Yadav, Hillori Desai, Yash Choudhary, Aman Pawar, Sarthak Shrivastava, Sudipta Biswas,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域で顕著な能力を示しているが、その経済的影響は、ツールの使用や関数呼び出しの課題によって制限されている。
本稿では,LLMの関数呼び出し能力を大幅に向上させる新しいアーキテクチャであるThorV2を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities in various domains, yet their economic impact has been limited by challenges in tool use and function calling. This paper introduces ThorV2, a novel architecture that significantly enhances LLMs' function calling abilities. We develop a comprehensive benchmark focused on HubSpot CRM operations to evaluate ThorV2 against leading models from OpenAI and Anthropic. Our results demonstrate that ThorV2 outperforms existing models in accuracy, reliability, latency, and cost efficiency for both single and multi-API calling tasks. We also show that ThorV2 is far more reliable and scales better to multistep tasks compared to traditional models. Our work offers the tantalizing possibility of more accurate function-calling compared to today's best-performing models using significantly smaller LLMs. These advancements have significant implications for the development of more capable AI assistants and the broader application of LLMs in real-world scenarios.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域で顕著な能力を示しているが、その経済的影響は、ツールの使用や関数呼び出しの課題によって制限されている。
本稿では,LLMの関数呼び出し能力を大幅に向上させる新しいアーキテクチャであるThorV2を紹介する。
我々は,OpenAI と Anthropic の上位モデルに対して ThorV2 を評価するために,HubSpot CRM 操作に焦点を当てた総合ベンチマークを開発した。
以上の結果から,TorV2は単一および複数API呼び出しタスクの精度,信頼性,レイテンシ,コスト効率において,既存のモデルよりも優れていた。
また、ThorV2は従来のモデルに比べてはるかに信頼性が高く、マルチステップタスクよりもスケールが優れていることも示しています。
我々の研究は、より小さなLCMを用いた今日の最高の性能モデルと比較して、より正確な関数呼び出しの可能性を提供する。
これらの進歩は、より有能なAIアシスタントの開発や、現実のシナリオにおけるLLMの幅広い応用に重要な意味を持つ。
関連論文リスト
- Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research [0.0]
大規模言語モデル(LLM)は、パラメータのサイズと性能を規定するアーキテクチャによって区別される。
社会科学者はテキスト分類タスクにLLMを採用しており、人間のコーダーではスケールが難しい。
本研究は,ChatGPT-4 などのモデルに対して,小型かつ微調整のオープンソース LLM が同等あるいは優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2024-10-31T20:26:30Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL は 1B から 4B までのパラメータを持つ一連の MLLM であり、パラメータの 5% しか持たない性能の90% を達成している。
我々は,ダウンストリームタスクにおける特化モデルの転送と性能向上を可能にする,Mini-InternVLの統一適応フレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-21T17:58:20Z) - Mixing It Up: The Cocktail Effect of Multi-Task Fine-Tuning on LLM Performance -- A Case Study in Finance [0.32985979395737774]
金融を含むドメイン固有の文脈における大規模言語モデル(LLM)の適用について検討する。
ターゲットタスクのみを微調整することが、必ずしも最も効果的な戦略であるとは限らない。
代わりに、マルチタスクの微調整はパフォーマンスを大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-01T22:35:56Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - xLAM: A Family of Large Action Models to Empower AI Agent Systems [111.5719694445345]
AIエージェントタスク用に設計された大規模なアクションモデルであるxLAMをリリースする。
xLAMは、複数のエージェント能力ベンチマークで例外的なパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-09-05T03:22:22Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Are Bigger Encoders Always Better in Vision Large Models? [21.797332686137203]
マルチモーダルな大言語モデル (MLLM) は、現実世界の応用において大きな可能性を示している。
現在の主流パラダイム下での視覚言語モデル(VLM)のスケーリング傾向は、広く研究されていない。
我々は,異なるエンコーダサイズと大言語モデル(LLM)サイズを用いて,MLLMの事前学習段階の実験を行う。
論文 参考訳(メタデータ) (2024-08-01T15:05:42Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
本稿では,7つの認知心理学実験から得られた10の行動指標を含むベンチマークであるCogBenchを紹介する。
本稿では,CagBenchを35大言語モデル(LLM)に適用し,統計的多レベルモデリング手法を用いて解析する。
オープンソースモデルは、プロプライエタリなモデルよりもリスクが高く、コードの微調整は必ずしもLLMの振舞いを促進しない。
論文 参考訳(メタデータ) (2024-02-28T10:43:54Z) - Cheaply Evaluating Inference Efficiency Metrics for Autoregressive
Transformer APIs [66.30706841821123]
大規模言語モデル(LLM)は、自然言語処理において多くの最先端システムに電力を供給する。
LLMは、推論時でさえ非常に計算コストが高い。
モデル間での推論効率を比較するための新しい指標を提案する。
論文 参考訳(メタデータ) (2023-05-03T21:51:42Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。