SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains
- URL: http://arxiv.org/abs/2410.17952v1
- Date: Wed, 23 Oct 2024 15:24:16 GMT
- Title: SimRAG: Self-Improving Retrieval-Augmented Generation for Adapting Large Language Models to Specialized Domains
- Authors: Ran Xu, Hui Liu, Sreyashi Nag, Zhenwei Dai, Yaochen Xie, Xianfeng Tang, Chen Luo, Yang Li, Joyce C. Ho, Carl Yang, Qi He,
- Abstract summary: Retrieval-augmented generation (RAG) enhances the question-answering abilities of large language models (LLMs)
However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data.
We propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation.
- Score: 45.349645606978434
- License:
- Abstract: Retrieval-augmented generation (RAG) enhances the question-answering (QA) abilities of large language models (LLMs) by integrating external knowledge. However, adapting general-purpose RAG systems to specialized fields such as science and medicine poses unique challenges due to distribution shifts and limited access to domain-specific data. To tackle this, we propose SimRAG, a self-training approach that equips the LLM with joint capabilities of question answering and question generation for domain adaptation. Our method first fine-tunes the LLM on instruction-following, question-answering, and search-related data. Then, it prompts the same LLM to generate diverse domain-relevant questions from unlabeled corpora, with an additional filtering strategy to retain high-quality synthetic examples. By leveraging these synthetic examples, the LLM can improve their performance on domain-specific RAG tasks. Experiments on 11 datasets, spanning two backbone sizes and three domains, demonstrate that SimRAG outperforms baselines by 1.2\%--8.6\%.
Related papers
- Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization [7.522493227357079]
Large Language Models (LLMs) are pre-trained on large-scale corpora.
LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions.
We introduce SMART-SLIC, a highly domain-specific LLM framework.
arXiv Detail & Related papers (2024-10-03T17:40:55Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
We investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift.
We devise a series of experiments to empirically explain the performance gap.
arXiv Detail & Related papers (2024-09-27T05:06:43Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - R-Eval: A Unified Toolkit for Evaluating Domain Knowledge of Retrieval Augmented Large Language Models [51.468732121824125]
Large language models have achieved remarkable success on general NLP tasks, but they may fall short for domain-specific problems.
Existing evaluation tools only provide a few baselines and evaluate them on various domains without mining the depth of domain knowledge.
In this paper, we address the challenges of evaluating RALLMs by introducing the R-Eval toolkit, a Python toolkit designed to streamline the evaluation of different RAGs.
arXiv Detail & Related papers (2024-06-17T15:59:49Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Enhancing LLM Factual Accuracy with RAG to Counter Hallucinations: A Case Study on Domain-Specific Queries in Private Knowledge-Bases [9.478012553728538]
We propose an end-to-end system design towards utilizing Retrieval Augmented Generation (RAG) to improve the factual accuracy of Large Language Models (LLMs)
Our system integrates RAG pipeline with upstream datasets processing and downstream performance evaluation.
Our experiments demonstrate the system's effectiveness in generating more accurate answers to domain-specific and time-sensitive inquiries.
arXiv Detail & Related papers (2024-03-15T16:30:14Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
We evaluate strategies for fine-tuning the OpenLlama LLM for question answering over life science knowledge graphs.
We propose an end-to-end data augmentation approach for extending a set of existing queries over a given knowledge graph.
We also investigate the role of semantic "clues" in the queries, such as meaningful variable names and inline comments.
arXiv Detail & Related papers (2024-02-07T07:24:01Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.