OPTIMA: Optimized Policy for Intelligent Multi-Agent Systems Enables Coordination-Aware Autonomous Vehicles
- URL: http://arxiv.org/abs/2410.18112v1
- Date: Wed, 09 Oct 2024 03:28:45 GMT
- Title: OPTIMA: Optimized Policy for Intelligent Multi-Agent Systems Enables Coordination-Aware Autonomous Vehicles
- Authors: Rui Du, Kai Zhao, Jinlong Hou, Qiang Zhang, Peter Zhang,
- Abstract summary: This work introduces OPTIMA, a novel distributed reinforcement learning framework for cooperative autonomous vehicle tasks.
Our goal is to improve the generality and performance of CAVs in highly complex and crowded scenarios.
- Score: 9.41740133451895
- License:
- Abstract: Coordination among connected and autonomous vehicles (CAVs) is advancing due to developments in control and communication technologies. However, much of the current work is based on oversimplified and unrealistic task-specific assumptions, which may introduce vulnerabilities. This is critical because CAVs not only interact with their environment but are also integral parts of it. Insufficient exploration can result in policies that carry latent risks, highlighting the need for methods that explore the environment both extensively and efficiently. This work introduces OPTIMA, a novel distributed reinforcement learning framework for cooperative autonomous vehicle tasks. OPTIMA alternates between thorough data sampling from environmental interactions and multi-agent reinforcement learning algorithms to optimize CAV cooperation, emphasizing both safety and efficiency. Our goal is to improve the generality and performance of CAVs in highly complex and crowded scenarios. Furthermore, the industrial-scale distributed training system easily adapts to different algorithms, reward functions, and strategies.
Related papers
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
We propose the cooperative cognitive dynamic system (CCDS) to optimize the management for UAV swarms.
CCDS is a hierarchical and cooperative control structure that enables real-time data processing and decision.
In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms.
arXiv Detail & Related papers (2024-05-18T12:45:00Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios [10.37986799561165]
Communication technologies enable coordination among connected and autonomous vehicles (CAVs)
We propose a framework of constrained multi-agent reinforcement learning (MARL) with a parallel safety shield for CAVs.
Results show that our proposed methodology significantly increases system safety and efficiency in challenging scenarios.
arXiv Detail & Related papers (2022-10-05T14:39:07Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Multi-Agent Reinforcement Learning for Unmanned Aerial Vehicle
Coordination by Multi-Critic Policy Gradient Optimization [16.6182621419268]
In agriculture, disaster management, search and rescue operations, commercial and military applications, the advantage of applying a fleet of drones originates from their ability to cooperate autonomously.
We propose a Multi-Agent Reinforcement Learning approach that achieves a stable policy network update and similarity in reward signal development for an increasing number of agents.
arXiv Detail & Related papers (2020-12-31T07:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.