SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles
- URL: http://arxiv.org/abs/2409.15105v1
- Date: Mon, 23 Sep 2024 15:16:35 GMT
- Title: SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles
- Authors: Ye Han, Lijun Zhang, Dejian Meng, Xingyu Hu, Yixia Lu,
- Abstract summary: We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
- Score: 9.840325772591024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In mixed autonomy traffic environment, every decision made by an autonomous-driving car may have a great impact on the transportation system. Because of the complex interaction between vehicles, it is challenging to make decisions that can ensure both high traffic efficiency and safety now and futher. Connected automated vehicles (CAVs) have great potential to improve the quality of decision-making in this continuous, highly dynamic and interactive environment because of their stronger sensing and communicating ability. For multi-vehicle collaborative decision-making algorithms based on deep reinforcement learning (DRL), we need to represent the interactions between vehicles to obtain interactive features. The representation in this aspect directly affects the learning efficiency and the quality of the learned policy. To this end, we propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms. A learnable policy token is used as the learning medium of the multi-vehicle joint policy, the states of all vehicles in the area of interest can be adaptively noticed in order to extract interactive features among agents. We also design an intuitive physical positional encodings, the redundant location information of which optimizes the performance of the network. Simulations show that our model can make good use of all the state information of vehicles in traffic scenario, so as to obtain high-quality driving decisions that meet efficiency and safety objectives. The comparison shows that our method significantly improves existing DRL-based multi-vehicle cooperative decision-making algorithms.
Related papers
- Joint Channel Selection using FedDRL in V2X [20.96900576250422]
Vehicle-to-everything (V2X) communication technology is revolutionizing transportation by enabling interactions between vehicles, devices, and infrastructures.
In this paper, we study the problem of joint channel selection, where vehicles with different technologies choose one or more Access Points (APs) to transmit messages in a network.
We propose an approach based on Federated Deep Reinforcement Learning (FedDRL), which enables each vehicle to benefit from other vehicles' experiences.
arXiv Detail & Related papers (2024-10-03T14:04:08Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Mix Q-learning for Lane Changing: A Collaborative Decision-Making Method in Multi-Agent Deep Reinforcement Learning [8.455482816036689]
This paper proposes a method named Mix Q-learning for Lane Changing(MQLC)
At the collective level, our method coordinates the individual Q and global Q networks by utilizing global information.
At the individual level, we integrated a deep learning-based intent recognition module into our observation and enhanced the decision network.
arXiv Detail & Related papers (2024-06-14T06:44:19Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z) - Efficient Connected and Automated Driving System with Multi-agent Graph
Reinforcement Learning [22.369111982782634]
Connected and automated vehicles (CAVs) have attracted more and more attention recently.
We focus on how to improve the outcomes of the total transportation system by allowing each automated vehicle to learn cooperation with each other.
arXiv Detail & Related papers (2020-07-06T14:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.