Graph Contrastive Learning via Cluster-refined Negative Sampling for Semi-supervised Text Classification
- URL: http://arxiv.org/abs/2410.18130v1
- Date: Fri, 18 Oct 2024 16:03:49 GMT
- Title: Graph Contrastive Learning via Cluster-refined Negative Sampling for Semi-supervised Text Classification
- Authors: Wei Ai, Jianbin Li, Ze Wang, Jiayi Du, Tao Meng, Yuntao Shou, Keqin Li,
- Abstract summary: Graph contrastive learning (GCL) has been widely applied to text classification tasks.
Existing GCL-based text classification methods often suffer from negative sampling bias.
We propose an innovative GCL-based method of graph contrastive learning via cluster-supervised negative sampling.
- Score: 22.476289610168056
- License:
- Abstract: Graph contrastive learning (GCL) has been widely applied to text classification tasks due to its ability to generate self-supervised signals from unlabeled data, thus facilitating model training. However, existing GCL-based text classification methods often suffer from negative sampling bias, where similar nodes are incorrectly paired as negative pairs. This can lead to over-clustering, where instances of the same class are divided into different clusters. To address the over-clustering issue, we propose an innovative GCL-based method of graph contrastive learning via cluster-refined negative sampling for semi-supervised text classification, namely ClusterText. Firstly, we combine the pre-trained model Bert with graph neural networks to learn text representations. Secondly, we introduce a clustering refinement strategy, which clusters the learned text representations to obtain pseudo labels. For each text node, its negative sample set is drawn from different clusters. Additionally, we propose a self-correction mechanism to mitigate the loss of true negative samples caused by clustering inconsistency. By calculating the Euclidean distance between each text node and other nodes within the same cluster, distant nodes are still selected as negative samples. Our proposed ClusterText demonstrates good scalable computing, as it can effectively extract important information from from a large amount of data. Experimental results demonstrate the superiority of ClusterText in text classification tasks.
Related papers
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
We propose Contrastive Learning-based Clustering (CLC), which uses contrastive learning to directly learn cluster assignment.
We achieve 53.4% accuracy on the full ImageNet dataset and outperform existing methods by large margins.
arXiv Detail & Related papers (2023-06-08T07:15:13Z) - Twin Contrastive Learning for Online Clustering [15.9794051341163]
This paper proposes to perform online clustering by conducting twin contrastive learning (TCL) at the instance and cluster level.
We find that when the data is projected into a feature space with a dimensionality of the target cluster number, the rows and columns of its feature matrix correspond to the instance and cluster representation.
arXiv Detail & Related papers (2022-10-21T02:12:48Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Enhancement of Short Text Clustering by Iterative Classification [0.0]
iterative classification applies outlier removal to obtain outlier-free clusters.
It trains a classification algorithm using the non-outliers based on their cluster distributions.
By repeating this several times, we obtain a much improved clustering of texts.
arXiv Detail & Related papers (2020-01-31T02:12:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.