Tethering Broken Themes: Aligning Neural Topic Models with Labels and Authors
- URL: http://arxiv.org/abs/2410.18140v1
- Date: Tue, 22 Oct 2024 11:20:47 GMT
- Title: Tethering Broken Themes: Aligning Neural Topic Models with Labels and Authors
- Authors: Mayank Nagda, Phil Ostheimer, Sophie Fellenz,
- Abstract summary: We introduce FANToM, a method for aligning neural topic models with both labels and authorship information.
Our approach demonstrates greater expressiveness than conventional topic models by learning the alignment between labels, topics, and authors.
- Score: 2.048226951354646
- License:
- Abstract: Topic models are a popular approach for extracting semantic information from large document collections. However, recent studies suggest that the topics generated by these models often do not align well with human intentions. While metadata such as labels and authorship information is available, it has not yet been effectively incorporated into neural topic models. To address this gap, we introduce FANToM, a novel method for aligning neural topic models with both labels and authorship information. FANToM allows for the inclusion of this metadata when available, producing interpretable topics and author distributions for each topic. Our approach demonstrates greater expressiveness than conventional topic models by learning the alignment between labels, topics, and authors. Experimental results show that FANToM improves upon existing models in terms of both topic quality and alignment. Additionally, it identifies author interests and similarities.
Related papers
- Embedded Topic Models Enhanced by Wikification [3.082729239227955]
We incorporate the Wikipedia knowledge into a neural topic model to make it aware of named entities.
Our experiments show that our method improves the performance of neural topic models in generalizability.
arXiv Detail & Related papers (2024-10-03T12:39:14Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
We present EdTM, as an approach for label name supervised topic modeling.
EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities.
arXiv Detail & Related papers (2024-06-28T13:57:27Z) - GINopic: Topic Modeling with Graph Isomorphism Network [0.8962460460173959]
We introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words.
We demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.
arXiv Detail & Related papers (2024-04-02T17:18:48Z) - Labeled Interactive Topic Models [10.555664965166232]
We introduce a user-friendly interaction for neural topic models.
This interaction permits users to assign a word label to a topic.
We evaluate our method through a human study, where users can relabel topics to find relevant documents.
arXiv Detail & Related papers (2023-11-15T23:18:01Z) - Federated Neural Topic Models [0.0]
Federated topic modeling allows multiple parties to jointly train a topic model without sharing their data.
We propose and analyze a federated implementation based on state-of-the-art neural topic modeling implementations.
In practice, our approach is equivalent to a centralized model training, but preserves the privacy of the nodes.
arXiv Detail & Related papers (2022-12-05T13:49:26Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
We propose a novel model that expands on the Latent Dirichlet Allocation by modeling strong dependence among the words in the same document.
We also simultaneously cluster users, removing the need for post-hoc cluster estimation.
Our method performs as well as -- or better -- than traditional approaches to problems arising in short text.
arXiv Detail & Related papers (2021-06-15T20:55:55Z) - A Disentangled Adversarial Neural Topic Model for Separating Opinions
from Plots in User Reviews [35.802290746473524]
We propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones.
We conduct an experimental assessment introducing a new collection of movie and book reviews paired with their plots.
Showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models.
arXiv Detail & Related papers (2020-10-22T02:15:13Z) - Improving Neural Topic Models using Knowledge Distillation [84.66983329587073]
We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers.
Our modular method can be straightforwardly applied with any neural topic model to improve topic quality.
arXiv Detail & Related papers (2020-10-05T22:49:16Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
We propose a topic adaptive storyteller to model the ability of inter-topic generalization.
We also propose a prototype encoding structure to model the ability of intra-topic derivation.
Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model.
arXiv Detail & Related papers (2020-08-11T03:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.