論文の概要: Music102: An $D_{12}$-equivariant transformer for chord progression accompaniment
- arxiv url: http://arxiv.org/abs/2410.18151v1
- Date: Wed, 23 Oct 2024 03:11:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:48:32.194890
- Title: Music102: An $D_{12}$-equivariant transformer for chord progression accompaniment
- Title(参考訳): Music102:$D_{12}$-equivariant transformer for chord progression accompaniment
- Authors: Weiliang Luo,
- Abstract要約: Music102は、D12等価変圧器によるコード進行伴奏を強化する。
先行する音楽知識を符号化することにより、モデルはメロディとコードシーケンスの双方で等価性を維持する。
この研究は、離散音楽領域への自己注意機構と層正規化の適応性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present Music102, an advanced model built upon the Music101 prototype, aimed at enhancing chord progression accompaniment through a D12-equivariant transformer. Inspired by group theory and symbolic music structures, Music102 leverages musical symmetry--such as transposition and reflection operations--integrating these properties into the transformer architecture. By encoding prior music knowledge, the model maintains equivariance across both melody and chord sequences. The POP909 dataset was employed to train and evaluate Music102, revealing significant improvements over Music101 in both weighted loss and exact accuracy metrics, despite using fewer parameters. This work showcases the adaptability of self-attention mechanisms and layer normalization to the discrete musical domain, addressing challenges in computational music analysis. With its stable and flexible neural framework, Music102 sets the stage for further exploration in equivariant music generation and computational composition tools, bridging mathematical theory with practical music performance.
- Abstract(参考訳): 我々は、D12-equivariant transformerによるコード進行伴奏の強化を目的とした、Music101のプロトタイプをベースにした高度なモデルであるMusic102を紹介する。
グループ理論とシンボリック音楽構造にインスパイアされたMusic102は、トランスポジションやリフレクション操作のような音楽対称性を活用し、これらの特性をトランスフォーマーアーキテクチャに統合する。
先行する音楽知識を符号化することにより、モデルはメロディとコードシーケンスの双方で等価性を維持する。
POP909データセットはMusic102のトレーニングと評価に使用されており、パラメータが少ないにも関わらず、重み付けされた損失と正確な精度のメトリクスの両方において、Music101よりも大幅に改善されている。
本研究は、離散音楽領域への自己認識機構と層正規化の適応性を示し、計算音楽解析における課題に対処する。
安定的で柔軟なニューラル・フレームワークであるMusic102は、同変音楽の生成と計算合成ツールのさらなる探索のステージを設定し、数学的理論を実用的な音楽演奏にブリッジする。
関連論文リスト
- Audio-to-Score Conversion Model Based on Whisper methodology [0.0]
この論文は、音楽情報をトークンに変換するカスタム表記システムである"Orpheus' Score"を革新的に導入している。
実験によると、従来のアルゴリズムと比較して、モデルは精度と性能を大幅に改善した。
論文 参考訳(メタデータ) (2024-10-22T17:31:37Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - Museformer: Transformer with Fine- and Coarse-Grained Attention for
Music Generation [138.74751744348274]
本研究では,音楽生成に新たな細粒度・粗粒度対応トランスフォーマーであるMuseformerを提案する。
具体的には、細かな注意を払って、特定のバーのトークンは、音楽構造に最も関係のあるバーのトークンに、直接参加する。
粗い注意を払って、トークンは計算コストを減らすために、それぞれのトークンではなく他のバーの要約にのみ参加する。
論文 参考訳(メタデータ) (2022-10-19T07:31:56Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - The Jazz Transformer on the Front Line: Exploring the Shortcomings of
AI-composed Music through Quantitative Measures [36.49582705724548]
本稿では,ジャズ音楽のリードシートをモデル化するために,Transformer-XLと呼ばれるニューラルシーケンスモデルを利用する生成モデルであるJazz Transformerを提案する。
次に、異なる視点から生成された合成の一連の計算分析を行う。
我々の研究は、なぜ現在まで機械生成音楽が人類の芸術に及ばないのか分析的な方法で示し、今後の自動作曲への取り組みがさらに追求されるよう、いくつかの目標を設定している。
論文 参考訳(メタデータ) (2020-08-04T03:32:59Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z) - Pop Music Transformer: Beat-based Modeling and Generation of Expressive
Pop Piano Compositions [37.66340344198797]
我々は、既存のトランスフォーマーモデルよりも優れたリズム構造でポップピアノ音楽を構成するポップ・ミュージック・トランスフォーマーを構築した。
特に、入力データにメートル法構造を課すことにより、トランスフォーマーは音楽のビートバーフレーズ階層構造をより容易に認識できるようにする。
論文 参考訳(メタデータ) (2020-02-01T14:12:35Z) - Learning Style-Aware Symbolic Music Representations by Adversarial
Autoencoders [9.923470453197657]
我々は,文脈情報を用いた変動型オートエンコーダを組み込むための,フレキシブルで自然な手段として,逆正則化を活用することに注力する。
第1回音楽Adversarial Autoencoder(MusAE)について紹介する。
我々のモデルは、標準変分オートエンコーダに基づく最先端モデルよりも高い再構成精度を有する。
論文 参考訳(メタデータ) (2020-01-15T18:07:20Z) - Modeling Musical Structure with Artificial Neural Networks [0.0]
音楽構造モデリングのさまざまな側面に対する人工知能の適用について検討する。
Gated Autoencoder(GAE)というコネクショナリストモデルを用いて,楽曲の断片間の変換を学習する方法を示す。
本稿では,ポリフォニック・ミュージックを区間の連続として表現するGAEの特別な予測訓練を提案する。
論文 参考訳(メタデータ) (2020-01-06T18:35:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。