論文の概要: Screw Geometry Meets Bandits: Incremental Acquisition of Demonstrations to Generate Manipulation Plans
- arxiv url: http://arxiv.org/abs/2410.18275v1
- Date: Wed, 23 Oct 2024 20:57:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:43:38.066544
- Title: Screw Geometry Meets Bandits: Incremental Acquisition of Demonstrations to Generate Manipulation Plans
- Title(参考訳): Screw Geometry Meets Bandits: Incremental Acquisition of Demonstrations to Generate Manipulation Plans
- Authors: Dibyendu Das, Aditya Patankar, Nilanjan Chakraborty, C. R. Ramakrishnan, I. V. Ramakrishnan,
- Abstract要約: 本研究では,1回に1回に1回,十分な審美的デモンストレーションの集合を得るという課題について検討する。
実験結果から操作計画を生成するために, (i) スクリュー幾何表現を用いて, これらのオープンな問題に対処する新しい手法を提案する。
本研究は,2つの実例操作課題,すなわち注水とスクーピングに関する実験結果である。
- 参考スコア(独自算出の注目度): 9.600625243282618
- License:
- Abstract: In this paper, we study the problem of methodically obtaining a sufficient set of kinesthetic demonstrations, one at a time, such that a robot can be confident of its ability to perform a complex manipulation task in a given region of its workspace. Although Learning from Demonstrations has been an active area of research, the problems of checking whether a set of demonstrations is sufficient, and systematically seeking additional demonstrations have remained open. We present a novel approach to address these open problems using (i) a screw geometric representation to generate manipulation plans from demonstrations, which makes the sufficiency of a set of demonstrations measurable; (ii) a sampling strategy based on PAC-learning from multi-armed bandit optimization to evaluate the robot's ability to generate manipulation plans in a subregion of its task space; and (iii) a heuristic to seek additional demonstration from areas of weakness. Thus, we present an approach for the robot to incrementally and actively ask for new demonstration examples until the robot can assess with high confidence that it can perform the task successfully. We present experimental results on two example manipulation tasks, namely, pouring and scooping, to illustrate our approach. A short video on the method: https://youtu.be/R-qICICdEos
- Abstract(参考訳): 本稿では,ロボットが作業空間の特定の領域で複雑な操作を行う能力に自信を持てるように,一度に1つずつ,十分な審美的デモンストレーションの集合を体系的に得るという課題について検討する。
実証から学ぶことは研究の活発な領域であるが、一連のデモンストレーションが十分かどうかを確かめる上での問題があり、体系的に追加のデモを求めることは未解決のままである。
我々はこれらのオープンな問題に対処するための新しいアプローチを提案する。
一 デモから操作計画を作成するためのねじ形図形表現で、一連のデモンストレーションの十分性を測定することができるもの
二 タスク空間のサブリージョンにおける操作計画を生成するロボットの能力を評価するためのマルチアームバンディット最適化からのPAC学習に基づくサンプリング戦略
(三)弱みの領域からさらなる実演を求めること。
そこで本研究では,ロボットがタスクを成功させるかどうかを高い信頼性で評価するまで,段階的に,かつ積極的に新しい実演例を求めるアプローチを提案する。
本研究は,2つの実例操作課題,すなわち注水とスクーピングに関する実験結果である。
メソッドに関する短いビデオ: https://youtu.be/R-qICICdEos
関連論文リスト
- AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
本研究では,汎用ロボットエージェントの学習を容易にするために,データ効率のよい方法で実演をスケールアップすることを目的とする。
AdaDemoは、デモデータセットを積極的に継続的に拡張することで、マルチタスクポリシー学習を改善するように設計されたフレームワークである。
論文 参考訳(メタデータ) (2024-04-11T01:59:29Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
我々は、小さなクリーンな実演セットと大きなノイズセットの両方で、準最適実演の模倣を考える。
本稿では,様々な品質のアクションプリミティブを異なるスキルに符号化し,サブデモレーションレベルの評価と模倣を行う手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T17:24:37Z) - Boosting Reinforcement Learning and Planning with Demonstrations: A
Survey [25.847796336059343]
シーケンシャルな意思決定にデモを使うことの利点について論じる。
我々は,最近提案されたManiSkillロボット学習ベンチマークにおいて,デモの生成と活用のための実用的なパイプラインを実演する。
論文 参考訳(メタデータ) (2023-03-23T17:53:44Z) - A Survey of Demonstration Learning [0.0]
実証学習(Demonstration Learning)は、エージェントがデモンストレーションで示された専門家の行動を模倣してタスクを実行することを学習するパラダイムである。
デモから複雑な振る舞いを学ぶ大きな可能性を秘めているため、大きな注目を集めている。
環境と対話することなく学習することで、デモ学習はロボット工学や医療といった幅広い現実世界の応用を自動化できる。
論文 参考訳(メタデータ) (2023-03-20T15:22:10Z) - Learning Agile Skills via Adversarial Imitation of Rough Partial
Demonstrations [19.257876507104868]
アジャイルスキルの習得は,ロボティクスにおける大きな課題のひとつだ。
本稿では,部分的かつ物理的に互換性のない実演から報酬関数を推定するための生成的逆数法を提案する。
我々は、Wasserstein GANの定式化と、粗い情報と部分的な情報を入力とするデモからの遷移によって、堅牢で実証行動の模倣が可能なポリシーを抽出できることを示した。
論文 参考訳(メタデータ) (2022-06-23T13:34:11Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Automatic Curricula via Expert Demonstrations [6.651864489482536]
本稿では、強化学習(RL)アプローチとして、エキスパートデモ(ACED)による自動カリキュラムを提案する。
ACEDは、デモンストレーションをセクションに分割し、トレーニングエピソードを異なるセクションからサンプリングされた状態に初期化することによって、専門家のデモ軌跡からキュリキュラを抽出する。
本稿では,ACEDと行動クローニングを組み合わせることで,最大1個の実演と20個の実演で積み重ねタスクを学習できることを示す。
論文 参考訳(メタデータ) (2021-06-16T22:21:09Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
ロボット学習を用いた動作生成の課題の1つは、人間のデモが1つのタスククエリに対して複数のモードを持つ分布に従うことである。
以前のアプローチでは、すべてのモードをキャプチャできなかったり、デモの平均モードを取得できないため、無効なトラジェクトリを生成する傾向があった。
この問題を克服する外挿能力を有するモーション生成モデルを提案する。
論文 参考訳(メタデータ) (2021-02-24T09:07:52Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
6-DoF操作設定に合わせたデータ収集システムを構築します。
システムによって収集された新しいデータに基づいて,ポリシーを反復的にトレーニングするアルゴリズムを開発した。
介入型システムで収集したデータに基づいて訓練されたエージェントと、非介入型デモ参加者が収集した同等数のサンプルで訓練されたアルゴリズムを上回るエージェントを実証する。
論文 参考訳(メタデータ) (2020-12-12T05:30:35Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
本研究では,環境と協調して対話し,専門家による実演を生かして政策を適応的に学習する新しい枠組みを提案する。
複数の人気強化学習アルゴリズムを用いた各種環境における実験結果から,提案手法はノイズの多い実演で頑健に学習可能であることが示された。
論文 参考訳(メタデータ) (2020-06-14T06:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。