Screw Geometry Meets Bandits: Incremental Acquisition of Demonstrations to Generate Manipulation Plans
- URL: http://arxiv.org/abs/2410.18275v1
- Date: Wed, 23 Oct 2024 20:57:56 GMT
- Title: Screw Geometry Meets Bandits: Incremental Acquisition of Demonstrations to Generate Manipulation Plans
- Authors: Dibyendu Das, Aditya Patankar, Nilanjan Chakraborty, C. R. Ramakrishnan, I. V. Ramakrishnan,
- Abstract summary: We study the problem of methodically obtaining a sufficient set of kinesthetic demonstrations, one at a time.
We present a novel approach to address these open problems using (i) a screw geometric representation to generate manipulation plans from demonstrations.
We present experimental results on two example manipulation tasks, namely, pouring and scooping, to illustrate our approach.
- Score: 9.600625243282618
- License:
- Abstract: In this paper, we study the problem of methodically obtaining a sufficient set of kinesthetic demonstrations, one at a time, such that a robot can be confident of its ability to perform a complex manipulation task in a given region of its workspace. Although Learning from Demonstrations has been an active area of research, the problems of checking whether a set of demonstrations is sufficient, and systematically seeking additional demonstrations have remained open. We present a novel approach to address these open problems using (i) a screw geometric representation to generate manipulation plans from demonstrations, which makes the sufficiency of a set of demonstrations measurable; (ii) a sampling strategy based on PAC-learning from multi-armed bandit optimization to evaluate the robot's ability to generate manipulation plans in a subregion of its task space; and (iii) a heuristic to seek additional demonstration from areas of weakness. Thus, we present an approach for the robot to incrementally and actively ask for new demonstration examples until the robot can assess with high confidence that it can perform the task successfully. We present experimental results on two example manipulation tasks, namely, pouring and scooping, to illustrate our approach. A short video on the method: https://youtu.be/R-qICICdEos
Related papers
- AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Boosting Reinforcement Learning and Planning with Demonstrations: A
Survey [25.847796336059343]
We discuss the advantages of using demonstrations in sequential decision making.
We exemplify a practical pipeline for generating and utilizing demonstrations in the recently proposed ManiSkill robot learning benchmark.
arXiv Detail & Related papers (2023-03-23T17:53:44Z) - A Survey of Demonstration Learning [0.0]
Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations.
It is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations.
Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare.
arXiv Detail & Related papers (2023-03-20T15:22:10Z) - Learning Agile Skills via Adversarial Imitation of Rough Partial
Demonstrations [19.257876507104868]
Learning agile skills is one of the main challenges in robotics.
We propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations.
We show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors.
arXiv Detail & Related papers (2022-06-23T13:34:11Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Automatic Curricula via Expert Demonstrations [6.651864489482536]
We propose Automatic Curricula via Expert Demonstrations (ACED) as a reinforcement learning (RL) approach.
ACED extracts curricula from expert demonstration trajectories by dividing demonstrations into sections and initializing training episodes to states sampled from different sections of demonstrations.
We show that a combination of ACED with behavior cloning allows pick-and-place tasks to be learned with as few as 1 demonstration and block stacking tasks to be learned with 20 demonstrations.
arXiv Detail & Related papers (2021-06-16T22:21:09Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Human-in-the-Loop Imitation Learning using Remote Teleoperation [72.2847988686463]
We build a data collection system tailored to 6-DoF manipulation settings.
We develop an algorithm to train the policy iteratively on new data collected by the system.
We demonstrate that agents trained on data collected by our intervention-based system and algorithm outperform agents trained on an equivalent number of samples collected by non-interventional demonstrators.
arXiv Detail & Related papers (2020-12-12T05:30:35Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.