Learning Agile Skills via Adversarial Imitation of Rough Partial
Demonstrations
- URL: http://arxiv.org/abs/2206.11693v1
- Date: Thu, 23 Jun 2022 13:34:11 GMT
- Title: Learning Agile Skills via Adversarial Imitation of Rough Partial
Demonstrations
- Authors: Chenhao Li, Marin Vlastelica, Sebastian Blaes, Jonas Frey, Felix
Grimminger, Georg Martius
- Abstract summary: Learning agile skills is one of the main challenges in robotics.
We propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations.
We show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors.
- Score: 19.257876507104868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning agile skills is one of the main challenges in robotics. To this end,
reinforcement learning approaches have achieved impressive results. These
methods require explicit task information in terms of a reward function or an
expert that can be queried in simulation to provide a target control output,
which limits their applicability. In this work, we propose a generative
adversarial method for inferring reward functions from partial and potentially
physically incompatible demonstrations for successful skill acquirement where
reference or expert demonstrations are not easily accessible. Moreover, we show
that by using a Wasserstein GAN formulation and transitions from demonstrations
with rough and partial information as input, we are able to extract policies
that are robust and capable of imitating demonstrated behaviors. Finally, the
obtained skills such as a backflip are tested on an agile quadruped robot
called Solo 8 and present faithful replication of hand-held human
demonstrations.
Related papers
- Adaptive Language-Guided Abstraction from Contrastive Explanations [53.48583372522492]
It is necessary to determine which features of the environment are relevant before determining how these features should be used to compute reward.
End-to-end methods for joint feature and reward learning often yield brittle reward functions that are sensitive to spurious state features.
This paper describes a method named ALGAE which alternates between using language models to iteratively identify human-meaningful features.
arXiv Detail & Related papers (2024-09-12T16:51:58Z) - AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents.
AdaDemo is a framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset.
arXiv Detail & Related papers (2024-04-11T01:59:29Z) - SWBT: Similarity Weighted Behavior Transformer with the Imperfect
Demonstration for Robotic Manipulation [32.78083518963342]
We propose a novel framework named Similarity Weighted Behavior Transformer (SWBT)
SWBT effectively learn from both expert and imperfect demonstrations without interaction with environments.
We are the first to attempt to integrate imperfect demonstrations into the offline imitation learning setting for robot manipulation tasks.
arXiv Detail & Related papers (2024-01-17T04:15:56Z) - RoboCLIP: One Demonstration is Enough to Learn Robot Policies [72.24495908759967]
RoboCLIP is an online imitation learning method that uses a single demonstration in the form of a video demonstration or a textual description of the task to generate rewards.
RoboCLIP can also utilize out-of-domain demonstrations, like videos of humans solving the task for reward generation, circumventing the need to have the same demonstration and deployment domains.
arXiv Detail & Related papers (2023-10-11T21:10:21Z) - Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Learning Complicated Manipulation Skills via Deterministic Policy with
Limited Demonstrations [9.640594614636049]
Deep reinforcement learning can efficiently develop policies for manipulators.
It takes time to collect sufficient high-quality demonstrations in practice.
Human demonstrations may be unsuitable for robots.
arXiv Detail & Related papers (2023-03-29T05:56:44Z) - Versatile Skill Control via Self-supervised Adversarial Imitation of
Unlabeled Mixed Motions [19.626042478612572]
We propose a cooperative adversarial method for obtaining versatile policies with controllable skill sets from unlabeled datasets.
We show that by utilizing unsupervised skill discovery in the generative imitation learning framework, novel and useful skills emerge with successful task fulfillment.
Finally, the obtained versatile policies are tested on an agile quadruped robot called Solo 8 and present faithful replications of diverse skills encoded in the demonstrations.
arXiv Detail & Related papers (2022-09-16T12:49:04Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations.
We learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator.
Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works.
arXiv Detail & Related papers (2021-10-28T14:15:47Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z) - Demonstration-Guided Reinforcement Learning with Learned Skills [23.376115889936628]
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors.
In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL.
We propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations.
arXiv Detail & Related papers (2021-07-21T17:59:34Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.