論文の概要: 1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
- arxiv url: http://arxiv.org/abs/2410.18293v1
- Date: Wed, 23 Oct 2024 21:57:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:50:30.534213
- Title: 1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
- Title(参考訳): 1-2-3-Go! 意思決定学習と一般化によるパラメータ化マルコフ決定過程のポリシー合成
- Authors: Muqsit Azeem, Debraj Chakraborty, Sudeep Kanav, Jan Kretinsky, Mohammadsadegh Mohagheghi, Stefanie Mohr, Maximilian Weininger,
- Abstract要約: 特に、パラメータ化されたマルコフ決定過程をインスタンス化するときに状態空間は極端に大きくなる。
我々は,そのような巨大なMDPに対して合理的な政策を得るための学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.8795040582681393
- License:
- Abstract: Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such \emph{huge} MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs. The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
- Abstract(参考訳): 確率論的モデル検査の進歩にもかかわらず、検証手法のスケーラビリティは依然として限られている。
特に、パラメータ化マルコフ決定過程(MDP)を適度な値でもインスタンス化する場合、状態空間は極端に大きくなる。
このような 'emph{huge} MDPs' のポリシーを合成することは、利用可能なツールの範囲を超えている。
我々は,そのような巨大なMDPに対して合理的な政策を得るための学習に基づくアプローチを提案する。
この考え方は、決定木学習を用いて、小さなインスタンスを大規模インスタンスにモデルチェックすることで得られる最適なポリシーを一般化することを目的としている。
その結果,提案手法は大規模モデルの明示的な状態空間探索の必要性を回避し,状態空間の爆発問題に対する実用的な解決策を提供する。
本手法の有効性を定量的な検証ベンチマークセットから検討し,提案手法の有効性を実証する。
実験結果から,モデルのサイズが最先端分析ツールの到達範囲を超える桁数であっても,我々の政策は良好に機能することが示唆された。
関連論文リスト
- Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
強化学習における探索問題について検討し,新しいモデルフリーソリューションを提案する。
我々の戦略は、最先端の探査アプローチよりも高速に効率的な政策を特定できる。
論文 参考訳(メタデータ) (2024-06-30T19:00:49Z) - Constrained Reinforcement Learning with Average Reward Objective: Model-Based and Model-Free Algorithms [34.593772931446125]
モノグラフは、平均報酬決定過程(MDPs)の文脈内で制約された様々なモデルベースおよびモデルフリーアプローチの探索に焦点を当てている
このアルゴリズムは制約付きMDPの解法として検討されている。
論文 参考訳(メタデータ) (2024-06-17T12:46:02Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
エピソードブロック MDP では、意思決定者は少数の潜在状態から生成される豊富な観測やコンテキストにアクセスすることができる。
まず、固定動作ポリシーに基づいて生成されたデータに基づいて、潜時状態復号関数を推定することに興味がある。
次に、報酬のないフレームワークにおいて、最適に近いポリシーを学習する問題について研究する。
論文 参考訳(メタデータ) (2022-08-17T18:49:53Z) - Bayesian regularization of empirical MDPs [11.3458118258705]
ベイズ的な視点を採り、マルコフ決定プロセスの目的関数を事前情報で正規化する。
提案するアルゴリズムは,大規模オンラインショッピングストアの合成シミュレーションと実世界の検索ログに基づいて評価する。
論文 参考訳(メタデータ) (2022-08-03T22:02:50Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
本稿では,モデルに基づく強化学習(RL)アルゴリズムを提案する。
我々は,全変動距離,カイ二乗発散,KL発散の3種類の不確実性集合を考察した。
この結果に加えて,ロバストポリシの利点に関する公式な分析的議論も提示する。
論文 参考訳(メタデータ) (2021-12-02T18:55:51Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Learning with Safety Constraints: Sample Complexity of Reinforcement
Learning for Constrained MDPs [13.922754427601491]
我々は,安全性の制約と,所望の精度を確保するために必要なサンプル数との関係を特徴付ける。
我々の主な発見は、制約のない状態の最もよく知られた境界と比較して、制約されたRLアルゴリズムのサンプルは制約の数に対数的な因子によって増加することである。
論文 参考訳(メタデータ) (2020-08-01T18:17:08Z) - Point-Based Methods for Model Checking in Partially Observable Markov
Decision Processes [36.07746952116073]
部分的に観測可能なマルコフ決定過程(POMDP)において線形時間論理式を満たすポリシーを合成する手法を提案する。
本稿では,所望の論理式を満たす最大確率を効率的に近似するために,ポイントベースの値反復法を提案する。
我々は,提案手法を大規模POMDPドメインに拡張し,その結果のポリシーの性能に強い拘束力を与えることを示した。
論文 参考訳(メタデータ) (2020-01-11T23:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。