Self-Supervised Learning for Time Series: A Review & Critique of FITS
- URL: http://arxiv.org/abs/2410.18318v1
- Date: Wed, 23 Oct 2024 23:03:09 GMT
- Title: Self-Supervised Learning for Time Series: A Review & Critique of FITS
- Authors: Andreas Løvendahl Eefsen, Nicholas Erup Larsen, Oliver Glozmann Bork Hansen, Thor Højhus Avenstrup,
- Abstract summary: Recently proposed model, FITS, claims competitive performance with significantly reduced parameter counts.
By training a one-layer neural network in the complex frequency domain, we are able to replicate these results.
Our experiments reveal that FITS especially excels at capturing periodic and seasonal patterns, but struggles with trending, non-periodic, or random-resembling behavior.
- Score: 0.0
- License:
- Abstract: Accurate time series forecasting is a highly valuable endeavour with applications across many industries. Despite recent deep learning advancements, increased model complexity, and larger model sizes, many state-of-the-art models often perform worse or on par with simpler models. One of those cases is a recently proposed model, FITS, claiming competitive performance with significantly reduced parameter counts. By training a one-layer neural network in the complex frequency domain, we are able to replicate these results. Our experiments on a wide range of real-world datasets further reveal that FITS especially excels at capturing periodic and seasonal patterns, but struggles with trending, non-periodic, or random-resembling behavior. With our two novel hybrid approaches, where we attempt to remedy the weaknesses of FITS by combining it with DLinear, we achieve the best results of any known open-source model on multivariate regression and promising results in multiple/linear regression on price datasets, on top of vastly improving upon what FITS achieves as a standalone model.
Related papers
- Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
Time series data are crucial across diverse domains such as finance and healthcare.
Traditional evaluation metrics fall short due to the temporal dependencies and potential high dimensionality of the features.
We propose the REcurrent NeurAL (RENAL) Goodness-of-Fit test, a novel and statistically rigorous framework for evaluating generative time series models.
arXiv Detail & Related papers (2024-10-17T19:32:25Z) - Recent Trends in Modelling the Continuous Time Series using Deep Learning: A Survey [0.18434042562191813]
Continuous-time series is essential for different modern application areas, e.g. healthcare, automobile, energy, finance, Internet of things (IoT)
This paper has described the general problem domain of time series and reviewed the challenges of modelling the continuous time series.
arXiv Detail & Related papers (2024-09-13T14:19:44Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Do We Really Need Deep Learning Models for Time Series Forecasting? [4.2698418800007865]
Time series forecasting is a crucial task in machine learning, as it has a wide range of applications.
Deep learning and matrix factorization models have been recently proposed to tackle the same problem with more competitive performance.
In this paper, we try to answer whether these highly complex deep learning models are without alternative.
arXiv Detail & Related papers (2021-01-06T16:18:04Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.