Scale-tailored localization and its observation in non-Hermitian electrical circuits
- URL: http://arxiv.org/abs/2410.18339v1
- Date: Thu, 24 Oct 2024 00:31:18 GMT
- Title: Scale-tailored localization and its observation in non-Hermitian electrical circuits
- Authors: Cui-Xian Guo, Luhong Su, Yongliang Wang, Li Li, Jinzhe Wang, Xinhui Ruan, Yanjing Du, Dongning Zheng, Shu Chen, Haiping Hu,
- Abstract summary: We unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization.
We show that the long-range coupling fundamentally reshapes the energy spectra and eigenstates by creating multiple connected paths on the lattice.
We present experimental observations of scale-tailored localization in non-Hermitian electrical circuits utilizing adjustable voltage followers and switches.
- Score: 11.17570969067434
- License:
- Abstract: Anderson localization and non-Hermitian skin effect are two paradigmatic wave localization phenomena, resulting from wave interference and the intrinsic non-Hermitian point gap, respectively. In this study, we unveil a novel localization phenomenon associated with long-range asymmetric coupling, termed scale-tailored localization, where the number of induced localized modes and their localization lengths scale exclusively with the coupling range. We show that the long-range coupling fundamentally reshapes the energy spectra and eigenstates by creating multiple connected paths on the lattice. Furthermore, we present experimental observations of scale-tailored localization in non-Hermitian electrical circuits utilizing adjustable voltage followers and switches. The circuit admittance spectra possess separate point-shaped and loop-shaped components in the complex energy plane, corresponding respectively to skin modes and scale-tailored localized states. Our findings not only expand and deepen the understanding of peculiar effects induced by non-Hermiticity but also offer a feasible experimental platform for exploring and controlling wave localizations.
Related papers
- Hidden exceptional point, localization-delocalization phase transition in Hermitian bosonic Kitaev model [0.0]
A Hermitian bosonic Kitaev model supports a non-Hermitian core matrix with exceptional points (EPs)
We show the connection between the hidden EP and the localization-delocalization transition in the equivalent systems.
Numerical simulations of the time evolution reveal a clear transition point at the EP.
arXiv Detail & Related papers (2024-10-21T12:52:18Z) - Exotic localization for the two body bound states in the non-reciprocal Hubbard model [9.166422816832855]
We investigate the localization behavior of two-body Hubbard model in the presence of non-reciprocal tunneling.
We present the non-Hermitian bound states obtained with the center of mass methods in the conditions of strong repulsive interaction.
arXiv Detail & Related papers (2024-09-12T09:43:33Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Dipole-dipole interactions mediated by a photonic flat band [44.99833362998488]
We study the photon-dipole interactions between emitters dispersively coupled to the photonic analogue of a flat band (FB)
We show that the strength of such photon-mediated interactions decays exponentially with distance with a characteristic localization length.
We find that the localization length grows with the overlap between CLSs according to an analytically-derived universal scaling law valid for a large class of FBs both in 1D and 2D.
arXiv Detail & Related papers (2024-05-30T18:00:05Z) - Eigenvector Correlations Across the Localisation Transition in
non-Hermitian Power-Law Banded Random Matrices [0.0]
We study eigenvector correlations across a localisation transition in non-Hermitian quantum systems.
We show that eigenvector correlations show marked differences between the delocalised and localised phases.
Our results open a new avenue for characterising dynamical phases in non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2023-04-19T18:00:02Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Resonant energy scales and local observables in the many-body localised
phase [0.0]
We formulate a theory for resonances in the many-body localised phase of disordered quantum spin chains in terms of local observables.
Key result is to show that there are universal correlations between the matrix elements of local observables and the many-body level spectrum.
arXiv Detail & Related papers (2022-02-21T19:00:07Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Chirality-driven delocalization in disordered waveguide-coupled quantum
arrays [0.0]
We study the competition between directional asymmetric coupling and disorder in a one-dimensional array of quantum emitters chirally coupled through a waveguide mode.
Our findings could be important for the rapidly developing field of the waveguide quantum electrodynamics.
arXiv Detail & Related papers (2020-12-12T18:40:44Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.