Unveiling the Self-Orthogonality at Exceptional Points in Driven $\mathcal{PT}$-Symmetric Systems
- URL: http://arxiv.org/abs/2507.10232v1
- Date: Mon, 14 Jul 2025 12:53:10 GMT
- Title: Unveiling the Self-Orthogonality at Exceptional Points in Driven $\mathcal{PT}$-Symmetric Systems
- Authors: Alexander Fritzsche, Riccardo Sorbello, Ronny Thomale, Alexander Szameit,
- Abstract summary: We explore the effect of self-orthogonality at exceptional points (EPs) in non-Hermitian Parity-Time-symmetric systems.<n>Using a driven three-band lattice model, we show that the Rabi frequency diverges as the system approaches an EP due to the coalescence of eigenstates.
- Score: 79.16635054977068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the effect of self-orthogonality at exceptional points (EPs) in non-Hermitian Parity-Time-symmetric systems. Using a driven three-band lattice model, we show that the Rabi frequency diverges as the system approaches an EP due to the coalescence of eigenstates. We demonstrate that this divergence manifests in experimentally accessible power oscillations, establishing a direct observable for self-orthogonality. Our results provide a pathway for probing EP physics in various metamaterial platforms.
Related papers
- Higher order coherence as witness of exceptional point in Hermitian bosonic Kitaev dimer [0.0]
The non-analyticity induced by exceptional points (EPs) has manifestations not only in non-Hermitian but also in Hermitian systems.<n>It is shown that the EPs separate the parameter space into four regions, in which the systems are characterized by different equivalent Hamiltonians.<n>The results indicate that the concept of the EP can be detected in a small Hermitian bosonic system.
arXiv Detail & Related papers (2025-02-26T14:34:36Z) - Hidden exceptional point, localization-delocalization phase transition in Hermitian bosonic Kitaev model [0.0]
A Hermitian bosonic Kitaev model supports a non-Hermitian core matrix with exceptional points (EPs)
We show the connection between the hidden EP and the localization-delocalization transition in the equivalent systems.
Numerical simulations of the time evolution reveal a clear transition point at the EP.
arXiv Detail & Related papers (2024-10-21T12:52:18Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) and their applications have been extensively studied.<n>We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.<n>We demonstrate that these EPs signify transitions between different topological classes.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian
Systems [0.0]
We show that adiabaticity can be achieved when dynamically winding around exceptional points (EPs) in non-Hermitian systems.
Our findings offer a promise for advancing various wave manipulation protocols in both quantum and classical domains.
arXiv Detail & Related papers (2024-02-23T12:53:16Z) - Parity-time-symmetric two-qubit system: entanglement and sensing [0.0]
We study exceptional-point effects and quantum sensing in a parity-time (PT)-symmetric two-qubit system with the Ising-type interaction.
We show that entanglement can be generated more quickly than the corresponding Hermitian system.
arXiv Detail & Related papers (2023-05-30T13:51:49Z) - Non-Hermitian Floquet-Free Analytically Solvable Time Dependant Systems [0.0]
We introduce a class of time-dependent non-Hermitian Hamiltonians that can describe a two-level system with temporally modulated on-site potential and couplings.
Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hidden PT-symmetry.
arXiv Detail & Related papers (2023-02-02T04:57:13Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.