Assessing Alcohol Use Disorder: Insights from Lifestyle, Background, and Family History with Machine Learning Techniques
- URL: http://arxiv.org/abs/2410.18354v1
- Date: Thu, 24 Oct 2024 01:30:54 GMT
- Title: Assessing Alcohol Use Disorder: Insights from Lifestyle, Background, and Family History with Machine Learning Techniques
- Authors: Chenlan Wang, Gaojian Huang, Yue Luo,
- Abstract summary: This study explored how lifestyle, personal background, and family history contribute to the risk of developing Alcohol Use Disorder (AUD)
Key determinants of AUD were identified using decision trees including annual income, recreational drug use, length of residence, sex/gender, marital status, education level, and family history of AUD.
Machine learning techniques including decision trees, random forests, and Naive Bayes were applied to predict an individual's likelihood of developing AUD.
- Score: 2.5042012845728827
- License:
- Abstract: This study explored how lifestyle, personal background, and family history contribute to the risk of developing Alcohol Use Disorder (AUD). Survey data from the All of Us Program was utilized to extract information on AUD status, lifestyle, personal background, and family history for 6,016 participants. Key determinants of AUD were identified using decision trees including annual income, recreational drug use, length of residence, sex/gender, marital status, education level, and family history of AUD. Data visualization and Chi-Square Tests of Independence were then used to assess associations between identified factors and AUD. Afterwards, machine learning techniques including decision trees, random forests, and Naive Bayes were applied to predict an individual's likelihood of developing AUD. Random forests were found to achieve the highest accuracy (82%), compared to Decision Trees and Naive Bayes. Findings from this study can offer insights that help parents, healthcare professionals, and educators develop strategies to reduce AUD risk, enabling early intervention and targeted prevention efforts.
Related papers
- Identifying Health Risks from Family History: A Survey of Natural Language Processing Techniques [10.121264712810616]
We survey the literature on the techniques that have been developed to utilise digital health records to identify risks of familial diseases.
We highlight that rule-based methods are heavily investigated and are still actively used for family history extraction.
More recent efforts have been put into building neural models based on large-scale pre-trained language models.
arXiv Detail & Related papers (2024-03-15T03:43:07Z) - Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School [0.0]
This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9.
Our methodology incorporated a comprehensive range of parameters, including students' academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data.
The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9.
arXiv Detail & Related papers (2024-03-01T13:18:08Z) - Social network analysis for personalized characterization and risk
assessment of alcohol use disorders in adolescents using semantic
technologies [42.29248343585333]
Alcohol Use Disorder (AUD) is a major concern for public health organizations worldwide.
This paper shows how a knowledge model is constructed, and compares the results obtained using the traditional method with this, fully automated model.
arXiv Detail & Related papers (2024-02-14T16:09:05Z) - Feasibility of Identifying Factors Related to Alzheimer's Disease and
Related Dementia in Real-World Data [56.7069469207376]
In total, we extracted 477 risk factors in 10 categories from 537 studies.
Genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs.
Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
arXiv Detail & Related papers (2024-02-03T18:17:19Z) - Exploration of Adolescent Depression Risk Prediction Based on Census
Surveys and General Life Issues [7.774933303698165]
The prevalence of depression among adolescents is steadily increasing.
Traditional diagnostic methods, which rely on scales or interviews, prove particularly inadequate for detecting depression in young people.
We introduce a method for managing severely imbalanced high-dimensional data and an adaptive predictive approach tailored to data structure characteristics.
arXiv Detail & Related papers (2024-01-06T09:14:25Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Cohort Characteristics and Factors Associated with Cannabis Use among
Adolescents in Canada Using Pattern Discovery and Disentanglement Method [3.77251737220697]
We aim to discover significant frequent/rare associations of behavioral factors among Canadian adolescents related to cannabis use.
We use a subset of Compass dataset which contains 18,761 records of students in grades 9 to 12 with 31 selected features (attributes) involving various characteristics.
We then used the Pattern Discovery and Disentanglement (PDD) algorithm to detect strong and rare (yet statistically significant) associations from the dataset.
arXiv Detail & Related papers (2021-09-03T21:53:14Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.