Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School
- URL: http://arxiv.org/abs/2403.14663v1
- Date: Fri, 1 Mar 2024 13:18:08 GMT
- Title: Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School
- Authors: Maria Psyridou, Fabi Prezja, Minna Torppa, Marja-Kristiina Lerkkanen, Anna-Maija Poikkeus, Kati Vasalampi,
- Abstract summary: This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9.
Our methodology incorporated a comprehensive range of parameters, including students' academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data.
The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Education plays a pivotal role in alleviating poverty, driving economic growth, and empowering individuals, thereby significantly influencing societal and personal development. However, the persistent issue of school dropout poses a significant challenge, with its effects extending beyond the individual. While previous research has employed machine learning for dropout classification, these studies often suffer from a short-term focus, relying on data collected only a few years into the study period. This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9. Our methodology incorporated a comprehensive range of parameters, including students' academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data. The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9. Further data collection and independent correlational and causal analyses are crucial. In future iterations, such models may have the potential to proactively support educators' processes and existing protocols for identifying at-risk students, thereby potentially aiding in the reinvention of student retention and success strategies and ultimately contributing to improved educational outcomes.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Bayesian Causal Forests for Longitudinal Data: Assessing the Impact of Part-Time Work on Growth in High School Mathematics Achievement [0.0]
We introduce a longitudinal extension of Bayesian Causal Forests.
This model allows for the flexible identification of both individual growth in mathematical ability and the effects of participation in part-time work.
Results reveal the negative impact of part time work for most students, but hint at potential benefits for those students with an initially low sense of school belonging.
arXiv Detail & Related papers (2024-07-16T17:18:33Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Students Success Modeling: Most Important Factors [0.47829670123819784]
The model undertakes to identify students likely to graduate, the ones likely to transfer to a different school, and the ones likely to drop out and leave their higher education unfinished.
Our experiments demonstrate that distinguishing between to-be-graduate and at-risk students is reasonably achievable in the earliest stages.
The model remarkably foresees the fate of students who stay in the school for three years.
arXiv Detail & Related papers (2023-09-06T19:23:10Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
This study employs classification for data mining techniques, and decision tree for algorithm.
With the utilization of the newly discovered predictive model, the prediction of students probabilities to pass the current courses they take gives 0.7619 accuracy, 0.8333 precision, 0.8823 recall, and 0.8571 f1 score.
arXiv Detail & Related papers (2023-04-12T01:57:08Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
In recent years, there is a lot of interest in modeling students' digital traces in Learning Management System (LMS) to understand students' learning behavior patterns.
This paper explores a student-centric analytical framework for LMS activity data that can provide not only correlational but causal insights mined from observational data.
We envision that those insights will provide convincing evidence for college student support groups to launch student-centered and targeted interventions.
arXiv Detail & Related papers (2022-10-27T14:08:25Z) - Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis [25.78814557029563]
We propose a Self-supervised Cognitive Diagnosis (SCD) framework to assist the graph-based cognitive diagnosis.
Specifically, we came up with a graph confusion method that drops edges under some special rules to generate different sparse views of the graph.
arXiv Detail & Related papers (2022-10-15T02:57:09Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.