Entanglement dynamics for SCTS in the Jaynes-Cummings model with atoms in Werner state
- URL: http://arxiv.org/abs/2410.18466v2
- Date: Fri, 25 Oct 2024 05:38:03 GMT
- Title: Entanglement dynamics for SCTS in the Jaynes-Cummings model with atoms in Werner state
- Authors: Koushik Mandal, M. V. Satyanarayana,
- Abstract summary: We study the phenomenon of entanglement sudden death (ESD), atomic inversion, and how various interactions affect these dynamics.
This work compares the effects of these interactions and photons on the atomic and field subsystems, providing insights into how thermal and quantum noise impact entanglement behavior in these systems.
- Score: 0.0
- License:
- Abstract: This paper investigates the dynamics of entanglement within the Jaynes-Cummings model (JCM), focusing on the behavior of atoms in both Bell and Werner states when subjected to thermal and squeezed photons. We study the phenomenon of entanglement sudden death (ESD), atomic inversion, and how various interactions (such as Ising-type, dipole-dipole, and Kerr-nonlinearity) affect these dynamics. This work compares the effects of these interactions and photons on the atomic and field subsystems, providing insights into how thermal and quantum noise impact entanglement behavior in these systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entanglement dynamics in double Jaynes-Cummings model and intensity-dependent double Jaynes-Cummings model for squeezed coherent thermal states [0.0]
Effect of squeezed photons and thermal photons on entanglement dynamics is observed.
Main feature of the double Jaynes-Cummings model - entanglement sudden death is observed for every subsystem.
proper choice of the interactions parameters, detuning and Kerr-nonlinearity effectively removes entanglement deaths from the dynamics.
arXiv Detail & Related papers (2024-05-17T06:22:03Z) - The role of thermal and squeezed photons in the entanglement dynamics of the double Jaynes-Cummings model [0.0]
The effects of squeezed photons and thermal photons on the entanglement dynamics of atom-atom, atom-field and field-field subsystems are studied.
We show that new entanglements are created in this atom-field system by introducing Ising-type interaction between the two atoms.
arXiv Detail & Related papers (2023-10-21T06:20:09Z) - Nonequilibrium dynamics of the Jaynes-Cummings dimer [0.0]
We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity.
Different types of transitions between the dynamical states lead to the self-trapping phenomenon.
For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance.
arXiv Detail & Related papers (2023-07-02T16:49:10Z) - Atomic Inversion and Entanglement Dynamics for Squeezed Coherent Thermal
States in the Jaynes-Cummings Model [0.0]
The tussling interplay between the thermal photons and the squeezed photons is discussed.
Various aspects of the atom-field interaction, like the atomic inversion, entanglement dynamics in the Jaynes-Cummings model have been investigated.
arXiv Detail & Related papers (2022-12-09T18:46:06Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Many-body radiative decay in strongly interacting Rydberg ensembles [0.0]
When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces.
We show that these interactions have also a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field.
We discuss how this collective dissipation - stemming from a mechanism different from the much studied super- and sub-radiance - accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.
arXiv Detail & Related papers (2022-06-06T18:30:52Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.