Nonequilibrium dynamics of the Jaynes-Cummings dimer
- URL: http://arxiv.org/abs/2307.00614v2
- Date: Sun, 7 Apr 2024 16:56:37 GMT
- Title: Nonequilibrium dynamics of the Jaynes-Cummings dimer
- Authors: G. Vivek, Debabrata Mondal, S. Sinha,
- Abstract summary: We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity.
Different types of transitions between the dynamical states lead to the self-trapping phenomenon.
For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the nonequilibrium dynamics of a Josephson-coupled Jaynes-Cummings dimer in the presence of Kerr nonlinearity, which can be realized in the cavity and circuit quantum electrodynamics systems. The semiclassical dynamics is analyzed systematically to chart out a variety of photonic Josephson oscillations and their regime of stability. Different types of transitions between the dynamical states lead to the self-trapping phenomenon, which results in photon population imbalance between the two cavities. We also study the dynamics quantum mechanically to identify characteristic features of different steady states and to explore fascinating quantum effects, such as spin dephasing, phase fluctuation, and revival phenomena of the photon field, as well as the entanglement of spin qubits. For a particular "self-trapped" state, the mutual information between the atomic qubits exhibits a direct correlation with the photon population imbalance, which is promising for generating photon mediated entanglement between two non interacting qubits in a controlled manner. Under a sudden quench from stable to unstable regime, the photon distribution exhibits phase space mixing with a rapid loss of coherence, resembling a thermal state. Finally, we discuss the relevance of the new results in experiments, which can have applications in quantum information processing and quantum technologies.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Observing dynamical phases of BCS superconductors in a cavity QED
simulator [0.0]
In conventional superconductors, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material.
Superconductivity naturally emerges at thermal equilibrium, but can also emerge out of equilibrium when the system's parameters are abruptly changed.
Here we realize an alternate way to generate the proposed dynamical phases using cavity quantum electrodynamics.
arXiv Detail & Related papers (2023-05-31T18:00:03Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Driven-dissipative Quantum Dynamics in Cavity Magnon-Polariton System [4.22183654884537]
The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are investigated.
Results demonstrate the rich higher-order quantum dynamics induced by magnetic light-matter interaction.
arXiv Detail & Related papers (2021-07-22T03:42:59Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Dissipative Josephson effect in coupled nanolasers [0.0]
We study a setup where dissipative interactions do amplify a photonic Josephson current.
We show that the Josephson photocurrent can be used to measure optical phase differences.
In the quantum limit, the accuracy of the two nanolaser interferometer grows with the square of the photon number.
arXiv Detail & Related papers (2020-11-06T10:21:33Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Exploring dynamical phase transitions with cold atoms in an optical
cavity [0.0]
We use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model.
Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters.
arXiv Detail & Related papers (2019-10-01T14:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.