A Note on Geometric Calibration of Multiple Cameras and Projectors
- URL: http://arxiv.org/abs/2410.18511v1
- Date: Thu, 24 Oct 2024 07:54:49 GMT
- Title: A Note on Geometric Calibration of Multiple Cameras and Projectors
- Authors: Tomislav Petkovic, Simone Gasparini, Tomislav Pribanic,
- Abstract summary: We discuss several important components of a real-world geometric calibration procedure used in our laboratory.
We specifically discuss the design of the calibration object and the image processing pipeline used to analyze it in the acquired images.
- Score: 1.693200946453174
- License:
- Abstract: Geometric calibration of cameras and projectors is an essential step that must be performed before any imaging system can be used. There are many well-known geometric calibration methods for calibrating systems comprised of multiple cameras, but simultaneous geometric calibration of multiple projectors and cameras has received less attention. This leaves unresolved several practical issues which must be considered to achieve the simplicity of use required for real world applications. In this work we discuss several important components of a real-world geometric calibration procedure used in our laboratory to calibrate surface imaging systems comprised of many projectors and cameras. We specifically discuss the design of the calibration object and the image processing pipeline used to analyze it in the acquired images. We also provide quantitative calibration results in the form of reprojection errors and compare them to the classic approaches such as Zhang's calibration method.
Related papers
- EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences.
Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations.
arXiv Detail & Related papers (2023-03-19T04:00:05Z) - Online Marker-free Extrinsic Camera Calibration using Person Keypoint
Detections [25.393382192511716]
We propose a marker-free online method for the extrinsic calibration of multiple smart edge sensors.
Our method assumes the intrinsic camera parameters to be known and requires priming with a rough initial estimate of the camera poses.
We show that the calibration with our method achieves lower reprojection errors compared to a reference calibration generated by an offline method.
arXiv Detail & Related papers (2022-09-15T15:54:21Z) - A Deep Perceptual Measure for Lens and Camera Calibration [35.03926427249506]
In place of the traditional multi-image calibration process, we propose to infer the camera calibration parameters directly from a single image.
We train this network using automatically generated samples from a large-scale panorama dataset.
We conduct a large-scale human perception study where we ask participants to judge the realism of 3D objects composited with correct and biased camera calibration parameters.
arXiv Detail & Related papers (2022-08-25T18:40:45Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z) - Camera Calibration with Pose Guidance [1.0152838128195465]
Camera calibration plays a critical role in various computer vision tasks such as autonomous driving or augmented reality.
We propose a calibration system called with Pose Guidance to improve calibration accuracy, reduce calibration variance among different users or different trials of the same person.
arXiv Detail & Related papers (2021-02-19T23:23:54Z) - Zero-Shot Calibration of Fisheye Cameras [0.010956300138340428]
The proposed method estimates camera parameters from the horizontal and vertical field of view information of the camera without any image acquisition.
The method is particularly useful for wide-angle or fisheye cameras that have large image distortion.
arXiv Detail & Related papers (2020-11-30T08:10:24Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Blur Aware Calibration of Multi-Focus Plenoptic Camera [7.57024681220677]
This paper presents a novel calibration algorithm for Multi-Focus Plenoptic Cameras (Cs) using raw images only.
Considering blur information, we propose a new Blur Aware Plenoptic (BAP) feature.
The effectiveness of our calibration method is validated by quantitative and qualitative experiments.
arXiv Detail & Related papers (2020-04-16T16:29:34Z) - DeProCams: Simultaneous Relighting, Compensation and Shape
Reconstruction for Projector-Camera Systems [91.45207885902786]
We propose a novel end-to-end trainable model named DeProCams to learn the photometric and geometric mappings of ProCams.
DeProCams explicitly decomposes the projector-camera image mappings into three subprocesses: shading attributes estimation, rough direct light estimation and photorealistic neural rendering.
In our experiments, DeProCams shows clear advantages over previous arts with promising quality and being fully differentiable.
arXiv Detail & Related papers (2020-03-06T05:49:16Z) - Redesigning SLAM for Arbitrary Multi-Camera Systems [51.81798192085111]
Adding more cameras to SLAM systems improves robustness and accuracy but complicates the design of the visual front-end significantly.
In this work, we aim at an adaptive SLAM system that works for arbitrary multi-camera setups.
We adapt a state-of-the-art visual-inertial odometry with these modifications, and experimental results show that the modified pipeline can adapt to a wide range of camera setups.
arXiv Detail & Related papers (2020-03-04T11:44:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.