Scaling up Masked Diffusion Models on Text
- URL: http://arxiv.org/abs/2410.18514v2
- Date: Fri, 20 Dec 2024 03:55:07 GMT
- Title: Scaling up Masked Diffusion Models on Text
- Authors: Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, Chongxuan Li,
- Abstract summary: Masked diffusion models (MDMs) have shown promise in language modeling.
This paper establishes the first scaling law for MDMs.
We train a family of MDMs with up to 1.1 billion (B) parameters to evaluate their performance against larger sizes.
- Score: 43.16800764711572
- License:
- Abstract: Masked diffusion models (MDMs) have shown promise in language modeling, yet their scalability and effectiveness in core language tasks, such as text generation and language understanding, remain underexplored. This paper establishes the first scaling law for MDMs, demonstrating a scaling rate comparable to autoregressive models (ARMs) and a relatively small compute gap. Motivated by their scalability, we train a family of MDMs with up to 1.1 billion (B) parameters to systematically evaluate their performance against ARMs of comparable or larger sizes. Fully leveraging the probabilistic formulation of MDMs, we propose a simple yet effective unsupervised classifier-free guidance that effectively exploits large-scale unpaired data, boosting performance for conditional inference. In language understanding, the 1.1B MDM outperforms the 1.1B TinyLlama model trained on the same data across four of eight zero-shot benchmarks. Notably, it achieves competitive math reasoning ability with the 7B Llama-2 model on the GSM8K dataset. In text generation, MDMs provide a flexible trade-off compared to ARMs utilizing KV-cache: MDMs match the performance of ARMs while being 1.4 times faster or achieving higher quality than ARMs at a higher computational cost. Moreover, MDMs address challenging tasks for ARMs by effectively handling bidirectional reasoning and adapting to temporal shifts in data. Notably, a 1.1B MDM breaks the reverse curse encountered by much larger ARMs with significantly more data and computation, such as 13B Llama-2 and 175B GPT-3. Our code is available at https://github.com/ML-GSAI/SMDM.
Related papers
- Large Language Diffusion Models [77.02553707673418]
Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs)
We introduce LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning paradigm.
Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming our self-constructed ARM baselines.
arXiv Detail & Related papers (2025-02-14T08:23:51Z) - MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
Homomorphic Encryption (HE) enables us to perform machine learning tasks over encrypted data.
We propose MOFHEI, a framework that optimize the model to make HE-based neural network inference, fast and efficient.
Our framework achieves up to 98% pruning ratio on LeNet, eliminating up to 93% of the required HE operations for performing PI.
arXiv Detail & Related papers (2024-12-10T22:44:54Z) - Defensive Dual Masking for Robust Adversarial Defense [5.932787778915417]
This paper introduces the Defensive Dual Masking (DDM) algorithm, a novel approach designed to enhance model robustness against such attacks.
DDM utilizes a unique adversarial training strategy where [MASK] tokens are strategically inserted into training samples to prepare the model to handle adversarial perturbations more effectively.
During inference, potentially adversarial tokens are dynamically replaced with [MASK] tokens to neutralize potential threats while preserving the core semantics of the input.
arXiv Detail & Related papers (2024-12-10T00:41:25Z) - ACDC: Autoregressive Coherent Multimodal Generation using Diffusion Correction [55.03585818289934]
Autoregressive models (ARMs) and diffusion models (DMs) represent two leading paradigms in generative modeling.
We introduce Autoregressive Coherent multimodal generation with Diffusion Correction (ACDC)
ACDC combines the strengths of both ARMs and DMs at the inference stage without the need for additional fine-tuning.
arXiv Detail & Related papers (2024-10-07T03:22:51Z) - DFedADMM: Dual Constraints Controlled Model Inconsistency for
Decentralized Federated Learning [52.83811558753284]
Decentralized learning (DFL) discards the central server and establishes a decentralized communication network.
Existing DFL methods still suffer from two major challenges: local inconsistency and local overfitting.
arXiv Detail & Related papers (2023-08-16T11:22:36Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
We present a suite of cost-effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and inference.
We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing PLMs instead of training models from scratch.
We implement a new inference toolkit, namely InfMoE, for using large-scale PLMs with limited computational resources.
arXiv Detail & Related papers (2021-06-20T15:43:54Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.